Latex-2-计算机视觉-cheatsheet

注:以下内容为以计算机视觉一些公式为例叙述Latex公式的书写规范,全部公式来自于吴福朝编著的《计算机视觉中的数学方法》一书,仅作练习用,请勿转载。如有侵权,请告知删除。


a x t + b y t + c t = 0 axt+byt+ct=0 axt+byt+ct=0
p = ( x t , y t , t ) T , l = ( a , b , c ) T \mathbf{p}=(xt,yt,t)^T,\mathbf{l}=(a,b,c)^T p=(xt,yt,t)Tl=(a,b,c)T
l T p = 0 \mathbf{l}^T\mathbf{p}=0 lTp=0

$axt+byt+ct=0$
$\mathbf{p}=(xt,yt,t)^T,\mathbf{l}=(a,b,c)^T$
$\mathbf{l}^T\mathbf{p}=0$

p ∞ = ( x , y , 0 ) \mathbf{p}_{\infty}=(x,y,0) p=(x,y,0)
l ∞ = ( 0 , 0 , 1 ) \mathbf{l}_{\infty}=(0,0,1) l=(0,0,1)

$\mathbf{p}_{\infty}=(x,y,0)$
$\mathbf{l}_{\infty}=(0,0,1)$

[ x ] × = ( 0 − t y t 0 − x − y x 0 ) [\mathbf{x}]_{\times}=\left(\begin{matrix}0&-t&y\\ t&0&-x\\ -y&x&0\end{matrix}\right) [x]×=0tyt0xyx0

r a n k ( [ x ] × ) = 2 rank([\mathbf{x}]_{\times})=2 rank([x]×)=2
x 1 × x 2 = [ x 1 ] × x 2 \mathbf{x}_1\times\mathbf{x}_2=[\mathbf{x}_1]_{\times}\mathbf{x}_2 x1×x2=[x1]×x2
[ x ] × x = 0 = x T [ x ] × [\mathbf{x}]_{\times}\mathbf{x}=0=\mathbf{x}^T[\mathbf{x}]_{\times} [x]×x=0=xT[x]×
y T [ x ] × y = 0 \mathbf{y}^T[\mathbf{x}]_{\times}\mathbf{y}=0 yT[x]×y=0

$[\mathbf{x}]_{\times}=\left(\begin{matrix}0&-t&y\\
t&0&-x\\
-y&x&0\end{matrix}\right)$

$rank([\mathbf{x}]_{\times})=2$
$\mathbf{x}_1\times\mathbf{x}_2=[\mathbf{x}_1]_{\times}\mathbf{x}_2$
$[\mathbf{x}]_{\times}\mathbf{x}=0=\mathbf{x}^T[\mathbf{x}]_{\times}$
$\mathbf{y}^T[\mathbf{x}]_{\times}\mathbf{y}=0$

l = p 1 × p 2        ⟺        \mathbf{l}=\mathbf{p}_1\times\mathbf{p}_2\;\;\iff\;\; l=p1×p2 线过点
p 2 T [ p 1 ] × p 3        ⟺        \mathbf{p}_2^T[\mathbf{p}_1]_{\times}\mathbf{p}_3\;\;\iff\;\; p2T[p1]×p3 三点共线

$\mathbf{l}=\mathbf{p}_1\times\mathbf{p}_2\;\;\iff\;\;$	线过点
$\mathbf{p}_2^T[\mathbf{p}_1]_{\times}\mathbf{p}_3\;\;\iff\;\;$	三点共线

( p 1 , p 2 ; p 3 , p 4 ) = d e t ( p ^ 1 , p ^ 3 ) d e t ( p ^ 2 , p ^ 3 ) : d e t ( p ^ 1 , p ^ 4 ) d e t ( p ^ 2 , p ^ 4 ) (\mathbf{p}_1,\mathbf{p}_2;\mathbf{p}_3,\mathbf{p}_4)=\frac{det(\mathbf{\hat{p}}_1,\mathbf{\hat{p}}_3)}{det(\mathbf{\hat{p}}_2,\mathbf{\hat{p}}_3)}:\frac{det(\mathbf{\hat{p}}_1,\mathbf{\hat{p}}_4)}{det(\mathbf{\hat{p}}_2,\mathbf{\hat{p}}_4)} (p1,p2;p3,p4)=det(p^2,p^3)det(p^1,p^3):det(p^2,p^4)det(p^1,p^4)

p 3 = p 1 + λ 1 p 2 \mathbf{p}_3=\mathbf{p}_1+\lambda_1\mathbf{p}_2 p3=p1+λ1p2
p 4 = p 1 + λ 2 p 2 \mathbf{p}_4=\mathbf{p}_1+\lambda_2\mathbf{p}_2 p4=p1+λ2p2

= λ 1 λ 2 =\frac{\lambda_1}{\lambda_2} =λ2λ1

$(\mathbf{p}_1,\mathbf{p}_2;\mathbf{p}_3,\mathbf{p}_4)=\frac{det(\mathbf{\hat{p}}_1,\mathbf{\hat{p}}_3)}{det(\mathbf{\hat{p}}_2,\mathbf{\hat{p}}_3)}:\frac{det(\mathbf{\hat{p}}_1,\mathbf{\hat{p}}_4)}{det(\mathbf{\hat{p}}_2,\mathbf{\hat{p}}_4)}$

$\mathbf{p}_3=\mathbf{p}_1+\lambda_1\mathbf{p}_2$
$\mathbf{p}_4=\mathbf{p}_1+\lambda_2\mathbf{p}_2$

$=\frac{\lambda_1}{\lambda_2}$

= − 1        ⟺        =-1\;\;\iff\;\; =1 调和共轭

$=-1\;\;\iff\;\;$	调和共轭

( l 1 , l 2 ; l 3 , l 4 ) = k 1 − k 3 k 2 − k 3 : k 1 − k 4 k 2 − k 4 (\mathbf{l}_1,\mathbf{l}_2;\mathbf{l}_3,\mathbf{l}_4)=\frac{k_1-k_3}{k2-k_3}:\frac{k_1-k_4}{k_2-k_4} (l1,l2;l3,l4)=k2k3k1k3:k2k4k1k4

$(\mathbf{l}_1,\mathbf{l}_2;\mathbf{l}_3,\mathbf{l}_4)=\frac{k_1-k_3}{k2-k_3}:\frac{k_1-k_4}{k_2-k_4}$

( l 1 , l 2 ; l 3 , l 4 ) = ( p 1 , p 2 ; p 3 , p 4 ) (\mathbf{l}_1,\mathbf{l}_2;\mathbf{l}_3,\mathbf{l}_4)=(\mathbf{p}_1,\mathbf{p}_2;\mathbf{p}_3,\mathbf{p}_4) (l1,l2;l3,l4)=(p1,p2;p3,p4)
四共点直线被另一直线截于点 p 1 , p 2 , p 3 , p 4 \mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3,\mathbf{p}_4 p1,p2,p3,p4

$(\mathbf{l}_1,\mathbf{l}_2;\mathbf{l}_3,\mathbf{l}_4)=(\mathbf{p}_1,\mathbf{p}_2;\mathbf{p}_3,\mathbf{p}_4)$
四共点直线被另一直线截于点$\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3,\mathbf{p}_4$
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值