摘要:本文聚焦人工智能在地质灾害预测的应用与前景。其可整合多源数据,用机器学习算法建模提升预测精准度,如随机森林用于滑坡预测;借图像识别自动识别灾害迹象,像 CNN 识别滑坡影像;靠 RNN 及其变体实时分析传感器数据预警异常。技术原理涵盖机器学习、深度学习算法。未来,深度学习算法待优化,与物联网、卫星遥感融合更紧密,还将结合 VR、AR 技术。尽管面临数据质量、模型可解释性等挑战,但其前景广阔,需多领域协同,以更好服务地质灾害防治,保障生命财产安全。
文章目录
人工智能赋能地质灾害预测:现状、挑战与广阔前景
一、引言
地质灾害作为严重威胁人类生命财产安全、生态环境稳定以及社会可持续发展的重要因素,一直以来都是全球关注的焦点问题。滑坡、泥石流、地震、地面塌陷等地质灾害的发生,不仅会造成大量的人员伤亡和财产损失,还可能引发一系列次生灾害,对生态环境和社会经济发展产生深远的影响。据统计,全球每年因地质灾害造成的经济损失高达数百亿美元,并且随着全球气候变化的加剧以及人类活动的不断增强,地质灾害的发生频率和危害程度呈现出逐年上升的趋势。
在这样的背景下,准确、及时地预测地质灾害ÿ