【C# + HALCON 机器视觉】HALCON经典算子:OCR文字识别(text_line_ocr)

摘要:本文聚焦 C# 与 HALCON 集成,探讨 OCR 文字识别算子text_line_ocr在药品包装生产日期识别中的应用。通过训练专用字体模型,结合find_ncc_model定位文本区域,实现高速流水线上喷码信息的读取。采用多光谱照明解决反光干扰,结合 C# 多线程技术提升处理效率,识别准确率 > 99.5%。同时将识别结果与数据库比对,防止漏检。阐述了 ROI 局部处理等性能优化方法、异常处理策略及跨平台集成方案,为工业 OCR 应用提供完整解决方案。


在这里插入图片描述


【C# + HALCON 机器视觉】HALCON经典算子:OCR文字识别(text_line_ocr

关键词:C#;HALCON;OCR;text_line_ocr;药品包装;生产日期识别;多光谱照明

一、引言

在医药生产领域,药品包装上的生产日期、批次号等信息是产品质量追溯的重要依据,直接关系到消费者的用药安全和企业的生产管理。传统的人工目视检查方式效率低、易出错,难以满足现代高速生产线的需求。而基于机器视觉的OCR(Optical Character Recognition,光学字符识别)技术凭借其自动化、高精度、高速度的特点,成为药品包装信息识别的理想解决方案。

HALCON作为一款功能强大的机器视觉软件库,提供了丰富的OCR相关算子,其中text_line_ocr算子能够高效地识别单行或多行文本,特别适用于药品包装上的生产日期、批次号等信息的识别。本文将深入探讨text_line_ocr算子的原理、应用场景,并结合实际案例详细介绍其在C#与HALCON集成开发中的具体实现方法,同时分享性能优化、异常处理和跨平台集成的相关经验。

二、OCR文字识别(text_line_ocr)算子原理

2.1 OCR技术基础

OCR技术是将图像中的文字转换为计算机可编辑的文本的过程,主要包括以下几个关键步骤:

  1. 图像预处理:对输入图像进行灰度化、滤波、二值化等操作,增强文字与背景的对比度,消除噪声干扰。
  2. 文本定位:在图像中定位和分割出包含文字的区域。
  3. 字符分割:将文本区域分割成单个字符。
  4. 特征提取:提取每个字符的特征,如笔画、轮廓等。
  5. 分类识别:将提取的特征与预训练的字符模型进行比对,确定每个字符的类别。
  6. 后处理:对识别结果进行校正和优化,提高识别准确率。

2.2 text_line_ocr算子详解

text_line_ocr是HALCON中用于单行或多行文本识别的核心算子,其语法格式如下:

text_line_ocr(Image : : OCRHandle, CharacterNames, MinConfidence : Class, Confidence, Row, Column, Angle, Score)

参数说明:

  • Image:输入的待识别图像。
  • OCRHandle:OCR分类器句柄,通过训练或加载预训练模型获得。
  • CharacterNames:要识别的字符集,如数字、字母等。
  • MinConfidence:最小置信度阈值,低于此值的识别结果将被过滤。
  • Class:输出的识别结果,即识别出的字符或字符串。
  • Confidence:输出的识别置信度,表示识别结果的可靠性。
  • RowColumn:输出的文本区域中心点坐标。
  • Angle:输出的文本倾斜角度。
  • Score:输出的识别得分。

2.3 OCR模型训练

在使用text_line_ocr进行文本识别之前,需要先训练一个适合特定字体和应用场景的OCR模型。HALCON提供了create_ocr_class_mlp等算子用于创建和训练OCR分类器,训练过程主要包括以下步骤:

  1. 收集样本:收集包含各种字符的样本图像。
  2. 字符分割:将样本图像中的字符分割成单个字符图像。
  3. 特征提取:提取每个字符图像的特征。
  4. 标注字符:为每个字符图像标注正确的字符类别。
  5. 训练模型:使用标注好的样本数据训练OCR分类器。
  6. 评估和优化:评估模型的识别准确率,并根据需要进行优化。

三、应用场景:药品包装生产日期识别

3.1 药品包装识别需求分析

在药品生产线上,需要对药品包装上的生产日期、批次号等信息进行快速、准确的识别,以确保产品信息的正确性和可追溯性。具体需求包括:

  • 高速识别:能够在高速流水线上实时识别药品包装上的文字信息。
  • 高精度识别:识别准确率需达到99.5%以上,以避免漏检和误检。
  • 抗干扰能力:能够应对药品包装表面的反光、污渍等干扰因素。
  • 数据比对:将识别结果与数据库中的批次信息进行比对,确保信息一致。

3.2 药品包装OCR识别流程

基于text_line_ocr算子的药品包装生产日期识别流程主要包括以下步骤:

  1. 图像采集:使用工业相机采集药品包装图像。
  2. 图像预处理:对图像进行灰度化、滤波、二值化等处理,增强文字清晰度。
  3. 文本定位:使用find_ncc_model等算子定位生产日期所在的文本区域。
  4. 文本识别:使用text_line_ocr算子对定位到的文本区域进行识别。
  5. 结果验证:将识别结果与数据库中的批次信息进行比对,验证识别结果的正确性。
  6. 结果输出:将识别结果和验证结果输出到系统中,供后续处理使用。

四、案例:高速流水线上读取喷码信息

4.1 实操环境准备

  • 硬件环境:工业相机(分辨率不低于1920×1080)、光源(多光谱光源,用于解决反光问题)、计算机(CPU: Intel Core i7及以上,内存16GB及以上)。
  • 软件环境:HALCON 21.11及以上版本、Visual Studio 2022、SQL Server数据库。
  • 创建C#控制台应用程序项目,并添加HALCON的引用:在项目中添加HalconDotNet.dll引用,确保能够调用HALCON的相关功能。

4.2 完整代码实现

using HalconDotNet;
using System;
using System.Data.SqlClient;
using System.Threading;

namespace DrugPackageOCR
{
   
    class Program
    {
   
        // 数据库连接字符串
        private static string connectionString = "Data Source=localhost;Initial Catalog=DrugProduction;Integrated Security=True";
        
        // OCR模型文件路径
        private static string ocrModelPath = "drug_ocr_model.omc";
        
        // 模板图像路径
        private static string templateImagePath = "date_template.jpg";
        
        // 多线程处理间隔(毫秒)
        private static int processingInterval = 200;

        static void Main(string[] args)
        {
   
            try
            {
   
                Console.WriteLine("药品包装OCR识别系统启动中...");
                
                // 初始化OCR模型
                HTuple ocrHandle;
                InitializeOCRModel(out ocrHandle);
                
                // 创建并训练模板
                HTuple modelID;
                CreateNCCModel(templateImagePath, out modelID);
                
                Console.WriteLine("系统初始化完成,开始监控生产线...");
                
                // 模拟高速生产线,使用多线程处理
                for (int i = 0; i < 100; i++) // 处理100个样本
                {
   
                    Thread thread = new Thread(() => ProcessPackage(ocrHandle, modelID));
                    thread.Start();
                    Thread.Sleep(processingInterval); // 控制处理速度
                }
                
                // 释放资源
                HOperatorSet.ClearOcrClass(ocrHandle);
                HOperatorSet.ClearNccModel(modelID);
                
                Console.WriteLine("按任意键退出...");
                Console.ReadKey();
            }
            catch (Exception ex)
            
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI_DL_CODE

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值