半正定矩阵的判定方法_Schur三角化,Cayley–Hamilton定理,谱分解,同时对角化,矩阵开方...

bc4c191ffb5213f4de96447b4eb96485.png
矩阵论记号约定​zhuanlan.zhihu.com
b900812f73f194c33a1d43402d663431.png

Schur三角化

  • 上的线性变换,则存在
    规范正交基
    ,使得
  • ,则
    ,且
    上三角矩阵

证明:

归纳。当
时,结论平凡。考虑
,取
的单位特征向量
,令
,则
。根据归纳假设取出
,则
即为所求。
  • [谱映射定理] 设
    的特征值组成集合
    ,若
    多项式,则
  • [Schur不等式] 设
    ,则
    ,等号成立当且仅当
    可对角化。

证明:考虑到酉相似不变性,不妨假设

是上三角矩阵,此时显然。

Cayley–Hamilton定理

  • 记矩阵
    特征多项式
    ,则

证明:考虑到酉相似不变性,不妨假设

是上三角矩阵,此时
。注意到
项为零的上三角矩阵,根据下述引理即证。
  • [引理] 设
    为上三角矩阵,若
    ,则

证明:直接计算可得。

谱分解(正规矩阵对角化)

,若
,则称
正规
  • 正规,则存在
    酉矩阵
    对角阵
    ,使得
  • 不妨设
    ,其中
    ,则

证明:考虑到酉相似不变性,不妨假设

是上三角矩阵,多次应用下述引理即得
是对角阵。
  • [引理] 若
    正规,则
    正规。

证明:

可得
,于是
,只能有
  • ,则存在酉矩阵
    对角阵
    ,使得

证明:易见Hermite矩阵正规,只需注意到

  • [实对称矩阵正交对角化] 若
    ,则存在正交矩阵
    ,使得
    是对角阵。

证明:

归纳。当
时,结论平凡。考虑
,取
的某个(实)特征值对应的单位特征向量
,令
,则
。根据归纳假设取出
,则
即为所求。

同时对角化

  • 若存在规范正交基
    使得
    ,则
  • 若正规矩阵
    可交换,则存在酉矩阵
    ,使得
    都是对角阵;
  • 阶实对称矩阵
    可交换,则存在正交矩阵
    ,使得
    都是对角阵。

证明:根据谱分解定理,存在酉矩阵/正交矩阵

互异
,使得
,其中
。记

其中

矩阵。由
可得
,于是
。取酉矩阵/正交矩阵
使得
是对角阵,则
即为所求。

半正定矩阵的方根

  • 半正定,则存在唯一的半正定矩阵
    ,使得
  • 存在实系数多项式
    ,使得

证明:谱分解得到

,其中
构成规范正交基,半正定保证了
。易见
满足要求。通过Lagrange插值可得实系数多项式
满足
,于是
。设半正定矩阵
满足
,则
可交换。取
,使得
都是对角阵。半正定保证了
对角元非负,而
,只能有
,故
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值