YOLOv8 如何实现多主干特征融合方式 | GhostNet+ShuffleNet / SwinTransformer+ShuffleNet

YOLOv8 采用多主干特征融合的方式,可以有效提升目标检测的性能。以下是对两种常见的多主干特征融合方式的详细介绍:

  1. GhostNet+ShuffleNet 特征融合

    • 原理:
      • GhostNet 是一种轻量级的神经网络,通过"幽灵"卷积核复制特征来减少参数数量和计算量。
      • ShuffleNet 是另一种轻量级网络,通过组间通道混洗和组内通道分组卷积来降低计算复杂度。
      • 将 GhostNet 和 ShuffleNet 作为主干网络,可以获得强大而高效的特征提取能力。
    • 应用场景:
      • 该方式适用于需要在移动设备或嵌入式系统上部署的轻量级目标检测任务,如智能手机、无人机、工业设备等。
    • 算法实现:
      • 在 YOLOv8 中,可以将 GhostNet 和 ShuffleNet 作为主干网络,并使用特征金字塔网络(FPN)和跨尺度特征融合等技术,将不同层级的特征进行融合。
    • 代码实现:
      import ultralytics
      from ultralytics.yolo.models.common import GhostNet, ShuffleNetV2
      
      # 创建 YOLOv8 模型
      model = ultralytics.YOLO('yolov8n.yaml')
      
      # 定义主干网络
      model.backbone = nn.Sequential(
          GhostNet(),
          ShuffleNetV2(channels_per_group=16)
      )
      
      # 进行训练和部署
      results = model.train(data='coco128.yaml', epochs=100)
      model.export(format='onnx')
      
  2. 基于注意力机制的多主干特征融合

    • 原理:
      • 除了 GhostNet+ShuffleNet 和 SwinTransformer+ShuffleNet 这两种方式,YOLOv8 还可以引入注意力机制来增强特征融合的效果。
      • 注意力机制可以自适应地学习不同特征之间的重要性,从而增强有用特征的权重,提高目标检测性能。
    • 应用场景:
      • 该方式适用于需要更高精度检测的应用场景,如医疗影像分析、高端安防监控等。
    • 算法实现:
      • 在 YOLOv8 中,可以将注意力模块(如SENet、CBAM等)插入到不同主干网络的特征融合阶段,以自适应地学习特征的重要性。
  3. 模块化设计的多主干特征融合

    • 原理:
      • YOLOv8 的设计采用了模块化的思想,各个模块可以灵活组合,以适应不同的应用场景。
      • 这种设计方式可以轻松地替换主干网络和特征融合模块,以实现多种多样的特征融合方式。
    • 应用场景:
      • 该方式适用于需要针对不同应用场景进行定制化部署的情况,如工业检测、医疗诊断等。
    • 算法实现:
      • 在 YOLOv8 中,可以通过修改 yolo.yaml 配置文件来自定义主干网络和特征融合模块的组合。
    • 代码实现:

       
      # yolo.yaml
      model: &model
       backbone: 
         - GhostNet()
         - ShuffleNetV2(channels_per_group=16)
         - SELayer(channels=320)
       head:
         type: YOLOHead
         anchors: 
           - [10,13, 16,30, 33,23]
           - [30,61, 62,45, 59,119]
           - [116,90, 156,198, 373,326]
  4. SwinTransformer+ShuffleNet 特征融合

    • 原理:
      • SwinTransformer 是一种基于 Transformer 的图像处理网络,具有强大的特征提取能力。
      • 将 SwinTransformer 与 ShuffleNet 结合,可以充分利用两种网络的优势,提升目标检测性能。
    • 应用场景:
      • 该方式适用于需要较高检测精度的应用场景,如自动驾驶、安防监控等。
    • 算法实现:
      • 在 YOLOv8 中,可以将 SwinTransformer 作为主干网络,并使用 ShuffleNet 作为特征融合模块,将不同尺度的特征进行融合。
    • 代码实现:
      import ultralytics
      from ultralytics.yolo.models.common import SwinTransformer, ShuffleNetV2
      
      # 创建 YOLOv8 模型
      model = ultralytics.YOLO('yolov8x.yaml')
      
      # 定义主干网络
      model.backbone = nn.Sequential(
          SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24]),
          ShuffleNetV2(channels_per_group=24)
      )
      
      # 进行训练和部署
      results = model.train(data='coco128.yaml', epochs=300)
      model.export(format='onnx')
      

部署测试搭建实现:

  • 代码实现:
    # yolo.yaml
    model: &model
     backbone: 
       - GhostNet()
       - ShuffleNetV2(channels_per_group=16)
       - SELayer(channels=320)
     head:
       type: YOLOHead
       anchors: 
         - [10,13, 16,30, 33,23]
         - [30,61, 62,45, 59,119]
         - [116,90, 156,198, 373,326]
  • 可以将上述模型部署到 NVIDIA Jetson 系列设备或 Intel 的 OpenVINO 框架上进行测试和实际应用。
  • 需要注意硬件资源的限制,可能需要进一步优化模型大小和推理速度。

文献材料链接:

应用示例产品:

  • 基于 YOLOv8 的多主干特征融合模型,可用于智能监控、无人机航拍、工业检测等场景。

总结:
多主干特征融合是 YOLOv8 中提高目标检测性能的一种有效方法。通过将不同类型的轻量级主干网络组合,可以充分利用各自的优势,提升模型的特征提取能力和推理效率。这种方式适用于各种移动端和嵌入式系统的目标检测应用。

影响:
多主干特征融合技术可以显著提升 YOLOv8 在资源受限设备上的目标检测性能,为智能设备的应用场景提供了更多可能性。

未来扩展:
未来可以探索更多类型的轻量级主干网络,如 MobileNetV3、EfficientNet 等,并尝试将它们与 SwinTransformer 或其他高性能网络进行融合,进一步提升 YOLOv8 在移动端的性能和部署效果。

  • 28
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值