YOLOv8 采用多主干特征融合的方式,可以有效提升目标检测的性能。以下是对两种常见的多主干特征融合方式的详细介绍:
-
GhostNet+ShuffleNet 特征融合
- 原理:
- GhostNet 是一种轻量级的神经网络,通过"幽灵"卷积核复制特征来减少参数数量和计算量。
- ShuffleNet 是另一种轻量级网络,通过组间通道混洗和组内通道分组卷积来降低计算复杂度。
- 将 GhostNet 和 ShuffleNet 作为主干网络,可以获得强大而高效的特征提取能力。
- 应用场景:
- 该方式适用于需要在移动设备或嵌入式系统上部署的轻量级目标检测任务,如智能手机、无人机、工业设备等。
- 算法实现:
- 在 YOLOv8 中,可以将 GhostNet 和 ShuffleNet 作为主干网络,并使用特征金字塔网络(FPN)和跨尺度特征融合等技术,将不同层级的特征进行融合。
- 代码实现:
import ultralytics from ultralytics.yolo.models.common import GhostNet, ShuffleNetV2 # 创建 YOLOv8 模型 model = ultralytics.YOLO('yolov8n.yaml') # 定义主干网络 model.backbone = nn.Sequential( GhostNet(), ShuffleNetV2(channels_per_group=16) ) # 进行训练和部署 results = model.train(data='coco128.yaml', epochs=100) model.export(format='onn
- 原理: