主干网络篇 | YOLOv5/v7 更换主干网络之 ResNet50/ResNet101 | 对比实验必备

主干网络篇 | YOLOv5/v7 更换主干网络之 ResNet50/ResNet101 | 对比实验必备

1. 简介

ResNet 是近年来最受欢迎的深度卷积神经网络架构之一,它以其优异的性能和鲁棒性而著称。ResNet50 和 ResNet101 是 ResNet 家族中最常用的两个模型,它们分别具有 50 层和 101 层残差块。

YOLOv5 和 YOLOv7 是目前流行的实时目标检测框架,它们以其快速、准确的检测性能而著称。然而,YOLOv5/v7 的默认主干网络通常是轻量级的,例如 Darknet53 或 CSPDarknet53,这可能会导致模型精度略逊于其他更复杂的模型。

将 ResNet50/ResNet101 作为主干网络替换 YOLOv5/v7 中原有骨干网络可以显著提高模型的精度,但同时也增加了模型的计算量。

2. 原理详解

ResNet 的核心思想是通过引入残差连接来解决深度卷积神经网络的梯度消失问题。残差连接可以将输入特征直接传递到输出特征,从而使梯度更容易流过网络。

ResNet 的基本结构如下图所示:

​编辑Opens in a new window​编辑www.researchgate.net

ResNet basic structure

ResNet50 和 ResNet101 的主要区别在于它们残差块的数量。ResNet50 具有 4 个阶段,每个阶段包含 3 个或 4 个残差块。ResNet101 具有 5 个阶段,每个阶段包含 3 个或 4 个残差块。

3. 应用场景解释

将 ResNet50/ResNet101 作为主干网络替换 YOLOv5/v7 中原有骨干网络具有以下优势:

  • 提高模型精度: ResNet50/ResNet101 在 ImageNet 数据集上取得了 76.1% 和 82.1% 的 Top-1 准确率,显著高于 YOLOv5/v7 默认主干网络的精度。
  • 扩展模型应用场景: ResNet50/ResNet101 可以应用于更复杂的场景,例如医学图像分析、遥感图像分析等。

4. 算法实现

将 ResNet50/ResNet101 作为主干网络替换 YOLOv5/v7 中原有骨干网络的具体步骤如下:

  1. 下载 ResNet50/ResNet101 预训练权重: 从 PyTorch 官方网站下载 ResNet50/ResNet101 预训练权重。
  2. 修改 YOLOv5/v7 代码: 修改 YOLOv5/v7 代码,将原有的骨干网络替换为 ResNet50/ResNet101。
  3. 训练模型: 如果需要,可以对模型进行微调以提高性能。

5. 完整代码实现

<
<think>嗯,用户之前问的是华为Atlas 300V的模型部署引擎,现在接着问YOLO系列目标检测的区别。看来他们对目标检测领域比较感兴趣,可能是在实际项目中需要选择适合的模型,或者在做技术调研。 首先,用户可能已经了解了华为的硬件部署,现在想了解不同YOLO模型的区别,可能是为了在Atlas 300V上部署合适的YOLO版本。需要明确各个YOLO版本的特点,尤其是性能效率,这对边缘设备部署很重要。 用户可能希望知道哪个YOLO版本在精度速度之间平衡最好,或者哪个更适合他们的应用场景,比如安防监控、交通检测等。同时,他们可能关心不同版本的计算需求,是否适配华为的Ascend芯片,比如模型是否支持ONNX转换,或者是否需要特定优化。 需要回顾YOLO的发展历程,从v1到v8,以及可能的衍生版本。每个版本的改进点,比如YOLOv3的Darknet-53,v4的CSP结构,v5的易用性,v6v7的实时优化,v8的多任务支持。要突出每个版本的核心创新应用场景,比如v3适合通用检测,v5适合工业界快速部署,v8适合需要实例分割的情况。 另外,用户可能对如何选择版本有疑问,需要给出选择建议,比如在边缘设备上推荐v5或v7,因为速度效率高;如果需要更高精度,可能考虑v8。同时,可能需要注意不同版本在华为平台上的支持情况,比如模型转换工具是否兼容,是否需要额外的工作量。 还要考虑用户是否有特定需求,比如是否需要处理视频流,多路并发,这时候YOLO的推理速度尤为关键。可能还需要提到模型量化,比如INT8量化在Ascend芯片上的支持情况,不同YOLO版本是否容易进行量化优化。 最后,总结时应该简明扼要,对比各版本的优缺点,帮助用户根据实际需求做出选择。可能用户没有明确说出他们的具体应用场景,所以需要给出通用建议,同时提示如果有更多细节可以提供更针对性的回答。</think>YOLO(You Only Look Once)系列是目标检测领域的经典算法,其核心特点是**单阶段(one-stage)检测****实时性**。从 YOLOv1 到 YOLOv8,每一代的改进都围绕**精度、速度、模型轻量化**展开。以下是各版本的**核心区别**与演进方向: --- ### **1. YOLOv1(2016)** - **核心思想**:将图像划分为 \( S \times S \) 网格,每个网格预测边界框(BBox)类别概率。 - **特点**: - **首次实现端到端实时检测**(45 FPS); - 直接回归 BBox 坐标,速度快但定位精度低; - 对小目标密集目标检测效果差。 - **局限性**:仅预测每个网格的 2 个框,漏检率高。 --- ### **2. YOLOv2(2017)** - **改进点**: - **Anchor Boxes**:引入预定义的 Anchor 框(基于数据集聚类),提升定位精度; - **多尺度预测**:使用不同分辨率的特征图检测不同尺度的目标; - **Batch Normalization**:提升训练稳定性收敛速度; - **High Resolution Classifier**:输入分辨率提升至 \( 448 \times 448 \)。 - **结果**:mAP 从 v1 的 63.4% 提升至 78.6%,速度保持实时性。 --- ### **3. YOLOv3(2018)** - **关键创新**: - **Darknet-53 主干网络**:结合残差结构(ResNet),提升特征提取能力; - **多尺度预测(FPN)**:3 种不同尺度的特征图(类似 FPN),增强小目标检测; - **分类器改为多标签逻辑回归**,支持重叠类别检测。 - **性能**:在 COCO 数据集上 mAP@0.557.9%,速度 20-30 FPS(Titan X)。 - **缺点**:模型参数量大,边缘设备部署困难。 --- ### **4. YOLOv4(2020)** - **优化重点**:**速度与精度的平衡**(适合 GPU 部署)。 - **核心改进**: - **CSPDarknet53**:减少计算量,提升推理速度; - **PANet(Path Aggregation Network)**:加强特征融合; - **Mish 激活函数**:增强非线性表达能力; - **数据增强策略**:CutMix、Mosaic 等提升泛化性。 - **结果**:COCO 上 mAP 达 43.5% (AP50),速度 65 FPS(Tesla V100)。 --- ### **5. YOLOv5(2020)** - **非官方但广泛使用**(由 Ultralytics 发布)。 - **改进方向**:**工程友好性**与**部署便捷性**。 - **亮点**: - **自适应锚框计算**:自动根据数据集调整 Anchor 尺寸; - **Focus 结构**:切片操作减少计算量; - **PyTorch 生态集成**:支持 ONNX、TensorRT 导出,易于部署(如华为 Atlas 平台); - **模块化设计**:提供 YOLOv5s/m/l/x 等不同参数量模型。 - **性能**:YOLOv5s 仅 7M 参数量,mAP@0.556.8%,速度 140 FPS(Tesla T4)。 --- ### **6. YOLOv6(2022,美团团队)** - **优化目标**:**工业场景的高效部署**。 - **关键技术**: - **RepVGG 风格主干网络**:训练时多分支,推理时单分支,兼顾精度与速度; - **Anchor-free 设计**:直接预测目标中心点,减少超参数依赖; - **SIoU Loss**:改进边界框回归损失函数,提升定位精度。 - **优势**:在边缘设备(如 Jetson AGX Xavier)上推理速度比 YOLOv5 快 20%。 --- ### **7. YOLOv7(2022)** - **核心创新**:**模型缩放与重参数化**。 - **改进点**: - **Extended Efficient Layer Aggregation (E-ELAN)**:动态调整特征融合路径; - **模型缩放技术**:通过复合系数统一缩放深度、宽度、分辨率; - **辅助训练头(Aux Head)**:提升训练效率。 - **性能**:相同速度下,mAP 比 YOLOv55-10%。 --- ### **8. YOLOv8(2023,Ultralytics)** - **最新版本**,支持**目标检测、实例分割、姿态估计**多任务。 - **主要改进**: - **Anchor-free 设计**:简化输出头,减少计算量; - **C2f 模块**:跨阶段部分连接,增强特征复用; - **动态标签分配(Task-Aligned Assigner)**:根据分类与回归质量分配正样本; - **Mosaic 增强升级**:结合 Copy-Paste 策略,提升小目标检测。 - **部署优势**:支持 ONNX、TensorRT、OpenVINO 等多种格式,适配华为昇腾芯片(需通过 ATC 工具转换 OM 模型)。 --- ### **各版本对比总结** | 版本 | 核心优势 | 适用场景 | 缺点 | |-------|--| | v1-v3 | 基础架构,实时性好 | 学术研究、简单检测任务 | 精度低,小目标漏检率高 | | v4 | 精度与速度平衡(GPU 优化) | 服务器端高性能推理 | 参数量大,边缘设备部署困难 | | v5 | 工程友好,易于部署 | 工业界快速落地(如 Atlas 300V 边缘端) | 非官方版本,学术认可度低 | | v6 | 边缘设备高效推理 | 嵌入式设备、智慧交通摄像头 | 社区生态较弱 | | v7 | 重参数化技术提升精度 | 高精度需求场景(如医学影像) | 训练资源消耗较大 | | v8 | 多任务支持,动态标签分配 | 复杂场景(检测+分割+姿态) | 模型灵活性可能增加调参难度 | --- ### **选择建议** 1. **边缘设备(如 Atlas 300V)**:优先选 **YOLOv5s/v7-tiny**,兼顾速度与精度; 2. **服务器端高精度场景**:选择 **YOLOv8x 或 YOLOv7**; 3. **多任务需求**:直接使用 **YOLOv8** 的分割/姿态估计扩展功能。 如果需要具体版本的部署示例(如华为昇腾平台适配方法),可进一步说明需求!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值