主干网络篇 | YOLOv5/v7 更换主干网络之 ResNet50/ResNet101 | 对比实验必备
1. 简介
ResNet 是近年来最受欢迎的深度卷积神经网络架构之一,它以其优异的性能和鲁棒性而著称。ResNet50 和 ResNet101 是 ResNet 家族中最常用的两个模型,它们分别具有 50 层和 101 层残差块。
YOLOv5 和 YOLOv7 是目前流行的实时目标检测框架,它们以其快速、准确的检测性能而著称。然而,YOLOv5/v7 的默认主干网络通常是轻量级的,例如 Darknet53 或 CSPDarknet53,这可能会导致模型精度略逊于其他更复杂的模型。
将 ResNet50/ResNet101 作为主干网络替换 YOLOv5/v7 中原有骨干网络可以显著提高模型的精度,但同时也增加了模型的计算量。
2. 原理详解
ResNet 的核心思想是通过引入残差连接来解决深度卷积神经网络的梯度消失问题。残差连接可以将输入特征直接传递到输出特征,从而使梯度更容易流过网络。
ResNet 的基本结构如下图所示:
编辑Opens in a new window编辑www.researchgate.net
ResNet basic structure
ResNet50 和 ResNet101 的主要区别在于它们残差块的数量。ResNet50 具有 4 个阶段,每个阶段包含 3 个或 4 个残差块。ResNet101 具有 5 个阶段,每个阶段包含 3 个或 4 个残差块。
3. 应用场景解释
将 ResNet50/ResNet101 作为主干网络替换 YOLOv5/v7 中原有骨干网络具有以下优势:
- 提高模型精度: ResNet50/ResNet101 在 ImageNet 数据集上取得了 76.1% 和 82.1% 的 Top-1 准确率,显著高于 YOLOv5/v7 默认主干网络的精度。
- 扩展模型应用场景: ResNet50/ResNet101 可以应用于更复杂的场景,例如医学图像分析、遥感图像分析等。
4. 算法实现
将 ResNet50/ResNet101 作为主干网络替换 YOLOv5/v7 中原有骨干网络的具体步骤如下:
- 下载 ResNet50/ResNet101 预训练权重: 从 PyTorch 官方网站下载 ResNet50/ResNet101 预训练权重。
- 修改 YOLOv5/v7 代码: 修改 YOLOv5/v7 代码,将原有的骨干网络替换为 ResNet50/ResNet101。
- 训练模型: 如果需要,可以对模型进行微调以提高性能。