介绍
在计算机视觉领域,低光照环境下的目标检测一直是一个具有挑战性的任务。本文将介绍如何将YOLOv8目标检测算法与SCI(自校准照明)低光照图像增强算法相结合,实现在夜间或低光照条件下的高效目标检测。
引言
传统的目标检测算法在光照条件良好的情况下表现优异,但在低光照环境下性能会显著下降。SCI算法是一种先进的低光照图像增强方法,能够有效提升图像的可视性。通过将SCI作为预处理步骤与YOLOv8结合,我们可以显著提升模型在黑暗环境中的检测能力。
技术背景
YOLOv8简介
YOLOv8是Ultralytics公司推出的最新一代YOLO(You Only Look Once)目标检测算法,具有速度快、精度高的特点,支持分类、检测和分割任务。
SCI算法简介
SCI(Self-Calibrated Illumination)是一种基于深度学习的低光照图像增强算法,能够自适应地调整图像光照,同时保持图像的自然性和细节。
应用使用场景
- 夜间安防监控
- 自动驾驶夜间场景感知
- 无人机夜间巡检
- 军事夜间侦察
- 医学低光照图像分析