实对称矩阵的性质_矩阵的秩一分解

819035ea89f6009f9e7faf4a1ab86957.png

矩阵分解

是寻求矩阵在各种意义下的分解形式,就像代数中的因数分解,多项式中的因式分解;如
;我们根据各种分解式的特征,可以得到原矩阵的某些性质,常见的矩阵分解如满秩分解,
分解,
分解,奇异值分解等等,将一个矩阵分解为多个形式简单的矩阵,也便于理解矩阵的根本性质,使用简单的矩阵也更易于进行计算,对矩阵进行分解,就像降维打击,在许多情况下,颇有效果。

鉴于此,今天我们来讨论矩阵的另外一种分解——秩一分解,“秩一分解”这个名词是自己瞎取得,不过用来形容矩阵的这种分解形式却是极好的。


证明:秩为
的矩阵可以表示为
个秩为1的矩阵之和,但是不能表示为少于
个秩为1的矩阵之和。

证明:由相抵标准型理论可得,存在非异矩阵

,使得

从而

显然

现反设

,且
,由秩不等式

容易知道,这是矛盾。

本题还有一种表述是:秩为r的矩阵可以分解为一个秩为k和一个秩为r-k的矩阵之和。

阶矩阵,则
存在非零
维列向量
,使得
的特征多项式为
,特别地,极小多项式为

b32bba270229db366096af5846acd8ec.png

注意到秩一矩阵任意两行两列都成比例。

下面我们来讨论实对称矩阵的秩一分解:

任意
阶实对称矩阵
可以写为

其中

的全体特征值,而
是标准正交的实
维列向量组,且满足
,因此全部
阶实对称
矩阵为

其中

,而
遍历
的标准正交基,由此我们可以知道,实对称矩阵可以分解为若干个互相垂直(指相乘为零矩阵)的投影矩阵之和。

更一般地,我们有对任意实系数多项式

,成立

证明:由

容易知道,
,从而
式为秩一分解;

de79fefb575653f72e39d386a9e548e7.png

假设
是欧氏空间,W是其子空间,对于
上的线性变换
,如果
,则称
是到子空间
的投影变换,简称投影。

证明:

是投影变换
的表示矩阵
满足:

全部
阶非零投影矩阵为

其中

的标准正交向量组。

假设
,其中
均为
实向量,满足
,证明:

满足:

.

愿满身朝气,心向阳光鸭!

a38e88991ca222f9e91960672f4a9f14.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值