微信公众号:「Python读财」
如有问题或建议,请公众号留言
Seaborn是基于matplotlib的Python可视化库。 它提供了一个高级界面来绘制有吸引力的统计图形。Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,不需要经过大量的调整就能使你的图变得精致。
注:所有代码均在IPython notebook中实现
barplot(条形图)
条形图表示数值变量与每个矩形高度的中心趋势的估计值,并使用误差线提供关于该估计值附近的不确定性的一些指示。具体用法如下:seaborn.barplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, estimator=(function mean), ci=95, n_boot=1000, units=None, orient=None, color=None, palette=None, saturation=0.75, errcolor='.26', errwidth=None, capsize=None, dodge=True, ax=None, **kwargs)
接下来还是通过具体例子学习里面的一些参数的用法:%matplotlib inline
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as
plt.rc("font",family="SimHei",size="12") #用于解决中文显示不了的问题
sns.set_style("whitegrid")
本篇文章所采用的数据集内容如下data.head(5) #data是一个dataframe
x,y(str):dataframe中的列名
data:dataframe或者数组sns.barplot(x="color",y="age",data=data)
关于图像的解释:Seaborn会对”color“列中的数值进行归类后按照estimator参数的方法(默认为平均值)计算相应的值,计算出来的值就作为条形图所显示的值(条形图上的误差棒则表示各类的数值相对