python barplot函数_Python可视化 | Seaborn5分钟入门(二)——barplot&countplot&pointplot

本文介绍了Python Seaborn库中的barplot、countplot和pointplot函数,用于数据可视化。barplot用于绘制条形图,展示数值变量的中心趋势;countplot绘制计数图,显示分类数量;pointplot则展示了数值变量的中心趋势和不确定性。文中通过实例详细解析了各个函数的参数用法,包括颜色、误差棒、分类顺序等,并提供了代码示例。
摘要由CSDN通过智能技术生成

微信公众号:「Python读财」

如有问题或建议,请公众号留言

Seaborn是基于matplotlib的Python可视化库。 它提供了一个高级界面来绘制有吸引力的统计图形。Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,不需要经过大量的调整就能使你的图变得精致。

注:所有代码均在IPython notebook中实现

barplot(条形图)

条形图表示数值变量与每个矩形高度的中心趋势的估计值,并使用误差线提供关于该估计值附近的不确定性的一些指示。具体用法如下:seaborn.barplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, estimator=(function mean), ci=95, n_boot=1000, units=None, orient=None, color=None, palette=None, saturation=0.75, errcolor='.26', errwidth=None, capsize=None, dodge=True, ax=None, **kwargs)

接下来还是通过具体例子学习里面的一些参数的用法:%matplotlib inline

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as

plt.rc("font",family="SimHei",size="12")  #用于解决中文显示不了的问题

sns.set_style("whitegrid")

本篇文章所采用的数据集内容如下data.head(5)   #data是一个dataframe

x,y(str):dataframe中的列名

data:dataframe或者数组sns.barplot(x="color",y="age",data=data)

关于图像的解释:Seaborn会对”color“列中的数值进行归类后按照estimator参数的方法(默认为平均值)计算相应的值,计算出来的值就作为条形图所显示的值(条形图上的误差棒则表示各类的数值相对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值