本文介绍seaborn.catplot函数可视化分类数据,涉及如下8种图,更换父类catplot中的kind参数即可,也可使用对应的子函数如下:
stripplot(),此时(kind="strip",默认);
swarmplot(),此时(kind="swarm")
boxplot(),此时(kind="box");
violinplot(),此时(kind="violin");
boxenplot(),此时(kind="boxen")
pointplot(),此时(kind="point");
barplot(),此时(kind="bar");
countplot(),此时(kind="count")
每类图函数都有自己独特的参数,本文主要介绍前四类图。
本文将了解什么?
1、seaborn.catplot简介
2、绘图数据集准备
3、seaborn.stripplot(分类散点图)
stripplot不分类散点图
stripplot分类散点图
设置点的属性
多重分类
catplot()结合stripplot和FacetGrid分图显示
4、seaborn.swarmplot(成簇散点图)
swarmplot不分类散点图
设置点的属性
5、seaborn.boxplot(箱图或箱线图)
6、seaborn.violinplot(小提琴图)
不分类小提琴图
分类小提琴图
inner参数
多重分类小提琴图
多重分类左右显示小提琴图
1、seaborn.catplot简介
实用场景:categorical data, one of the main variables is “categorical” (divided into discrete groups)
语法:seaborn.catplot(x=None, y=None, hue=None, data=None, row=None, col=None, col_wrap=None, estimator=, ci=95, n_boot=1000, units=None, seed=None, order=None, hue_order=None, row_order=None, col_order=None, kind='strip', height=5, aspect=1, orient=None, color=None, palette=None, legend=True, legend_out=True, sharex=True, sharey=True, margin_titles=False, facet_kws=None, **kwargs)
seaborn.catplot可分3大类,更细分8小类:
分类散点图, stripplot(),此时(kind="strip",默认); swarmplot(),此时(kind="swarm")
分类分布图, boxplot(),此时(kind="box"); violinplot(),此时(kind="violin"); boxenplot(),此时(kind="boxen")
分类估计图, pointplot(),此时(kind="point"); barplot(),此时(kind="bar"); countplot(),此时(kind="count")8类图长什么样子?(以下绘图使用鸢尾花数据集)
for i in list("point, bar, strip, s