python中seaborn画swarm图_Python可视化21|Seaborn.catplot(上)-stripplot|swarmplot|boxplot|violinplot...

本文详细介绍了Python数据可视化库Seaborn中的catplot函数,包括stripplot, swarmplot, boxplot和violinplot的用法,并通过鸢尾花数据集展示了各种图表的绘制过程,帮助理解这些图表在分类数据可视化中的应用。" 51737058,5617620,Android二维码/条形码扫描与生成实战,"['Android开发', '二维码技术', '条形码扫描', 'Zxing库', '移动开发']
摘要由CSDN通过智能技术生成

本文介绍seaborn.catplot函数可视化分类数据,涉及如下8种图,更换父类catplot中的kind参数即可,也可使用对应的子函数如下:

stripplot(),此时(kind="strip",默认);

swarmplot(),此时(kind="swarm")

boxplot(),此时(kind="box");

violinplot(),此时(kind="violin");

boxenplot(),此时(kind="boxen")

pointplot(),此时(kind="point");

barplot(),此时(kind="bar");

countplot(),此时(kind="count")

每类图函数都有自己独特的参数,本文主要介绍前四类图。

本文将了解什么?

1、seaborn.catplot简介

2、绘图数据集准备

3、seaborn.stripplot(分类散点图)

stripplot不分类散点图

stripplot分类散点图

设置点的属性

多重分类

catplot()结合stripplot和FacetGrid分图显示

4、seaborn.swarmplot(成簇散点图)

swarmplot不分类散点图

设置点的属性

5、seaborn.boxplot(箱图或箱线图)

6、seaborn.violinplot(小提琴图)

不分类小提琴图

分类小提琴图

inner参数

多重分类小提琴图

多重分类左右显示小提琴图

1、seaborn.catplot简介

实用场景:categorical data, one of the main variables is “categorical” (divided into discrete groups)

语法:seaborn.catplot(x=None, y=None, hue=None, data=None, row=None, col=None, col_wrap=None, estimator=, ci=95, n_boot=1000, units=None, seed=None, order=None, hue_order=None, row_order=None, col_order=None, kind='strip', height=5, aspect=1, orient=None, color=None, palette=None, legend=True, legend_out=True, sharex=True, sharey=True, margin_titles=False, facet_kws=None, **kwargs)

seaborn.catplot可分3大类,更细分8小类:

分类散点图, stripplot(),此时(kind="strip",默认); swarmplot(),此时(kind="swarm")

分类分布图, boxplot(),此时(kind="box"); violinplot(),此时(kind="violin"); boxenplot(),此时(kind="boxen")

分类估计图, pointplot(),此时(kind="point"); barplot(),此时(kind="bar"); countplot(),此时(kind="count")8类图长什么样子?(以下绘图使用鸢尾花数据集)

for i in list("point, bar, strip, s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值