网易公开课python_【深度学习】吴恩达网易公开课练习(class1 week3)

知识点梳理

python工具使用:

sklearn: 数据挖掘,数据分析工具,内置logistic回归

matplotlib: 做图工具,可绘制等高线等

绘制散点图: plt.scatter(X[0, :], X[1, :], c=np.squeeze(Y), s=40, cmap=plt.cm.Spectral); s:绘制点大小 cmap:颜色集

绘制等高线: 先做网格,计算结果,绘图

x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1

y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1

h = 0.01

xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

Z = model(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

#xx是x轴值, yy是y轴值, Z是预测结果值, cmap表示采用什么颜色

plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)

关键变量:

m: 训练样本数量

n_x:一个训练样本的输入数量,输入层大小

n_h:隐藏层大小

方括号上标[l]: 第l层

圆括号上标(i): 第i个样本

$$

X =

\left[

\begin{matrix}

\vdots & \vdots & \vdots & \vdots \\

x^{(1)} & x^{(2)} & \vdots & x^{(m)} \\

\vdots & \vdots & \vdots & \vdots \\

\end{matrix}

\right]_{(n\_x, m)}

$$

$$

W^{[1]} =

\left[

\begin{matrix}

\cdots & w^{[1] T}_1 & \cdots \\

\cdots & w^{[1] T}_2 & \cdots \\

\cdots & \cdots & \cdots \\

\cdots & w^{[1] T}_{n\_h} & \cdots \\

\end{matrix}

\right]_{(n\_h, n\_x)}

$$

$$

b^{[1]} =

\left[

\begin{matrix}

b^{[1]}_1 \\

b^{[1]}_2 \\

\vdots \\

b^{[1]}_{n\_h} \\

\end{matrix}

\right]_{(n\_h, 1)}

$$

$$

A^{[1]}=

\left[

\begin{matrix}

\vdots & \vdots & \vdots & \vdots \\

a^{[1](1)} & a^{[1](2)} & \vdots & a^{[1](m)} \\

\vdots & \vdots & \vdots & \vdots \\

\end{matrix}

\right]_{(n\_h, m)}

$$

$$

Z^{[1]}=

\left[

\begin{matrix}

\vdots & \vdots & \vdots & \vdots \\

z^{[1](1)} & z^{[1](2)} & \vdots & z^{[1](m)} \\

\vdots & \vdots & \vdots & \vdots \\

\end{matrix}

\right]_{(n\_h, m)}

$$

***

单隐层神经网络关键公式:

前向传播:

$$Z^{[1]}=W^{[1]}X+b^{[1]}$$

$$A^{[1]}=g^{[1]}(Z^{[1]})$$

$$Z^{[2]}=W^{[2]}A^{[1]}+b^{[2]}$$

$$A^{[2]}=g^{[2]}(Z^{[2]})$$

Z1 = np.dot(W1, X) + b1

A1 = np.tanh(Z1)

Z2 = np.dot(W2, A1) + b2

A2 = sigmoid(Z2)

反向传播

597286-20180129002919584-796913312.png

dZ2 = A2 - Y

dW2 = 1 / m * np.dot(dZ2, A1.T)

db2 = 1 / m * np.sum(dZ2, axis = 1, keepdims = True)

dZ1 = np.dot(W2.T, dZ2) * (1 - np.power(A1, 2))

dW1 = 1 / m * np.dot(dZ1, X.T)

db1 = 1 / m * np.sum(dZ1, axis = 1, keepdims = True)

cost计算

\[J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large{(} \small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large{)} \small

\]

logprobs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1 - A2), 1 - Y)

cost = - 1 / m * np.sum(logprobs)

单隐层神经网络代码:

# Package imports

import numpy as np

import matplotlib.pyplot as plt

import sklearn

import sklearn.datasets

import sklearn.linear_model

from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets

%matplotlib inline

np.random.seed(1) # set a seed so that the results are consistent

def initialize_parameters(n_x, n_h, n_y):

np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.

W1 = np.random.randn(n_h, n_x) * 0.01

b1 = np.zeros((n_h, 1))

W2 = np.random.randn(n_y, n_h)

b2 = np.zeros((n_y, 1))

assert (W1.shape == (n_h, n_x))

assert (b1.shape == (n_h, 1))

assert (W2.shape == (n_y, n_h))

assert (b2.shape == (n_y, 1))

parameters = {"W1": W1,

"b1": b1,

"W2": W2,

"b2": b2}

return parameters

def forward_propagation(X, parameters):

# Retrieve each parameter from the dictionary "parameters"

W1 = parameters["W1"]

b1 = parameters["b1"]

W2 = parameters["W2"]

b2 = parameters["b2"]

# Implement Forward Propagation to calculate A2 (probabilities)

Z1 = np.dot(W1, X) + b1

A1 = np.tanh(Z1)

Z2 = np.dot(W2, A1) + b2

A2 = sigmoid(Z2)

assert(A2.shape == (1, X.shape[1]))

cache = {"Z1": Z1,

"A1": A1,

"Z2": Z2,

"A2": A2}

return A2, cache

def compute_cost(A2, Y, parameters):

m = Y.shape[1] # number of example

# Compute the cross-entropy cost

logprobs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1 - A2), 1 - Y)

cost = - 1 / m * np.sum(logprobs)

cost = np.squeeze(cost) # makes sure cost is the dimension we expect.

# E.g., turns [[17]] into 17

assert(isinstance(cost, float))

return cost

def backward_propagation(parameters, cache, X, Y):

m = X.shape[1]

# First, retrieve W1 and W2 from the dictionary "parameters".

W1 = parameters["W1"]

W2 = parameters["W2"]

# Retrieve also A1 and A2 from dictionary "cache".

A1 = cache["A1"]

A2 = cache["A2"]

# Backward propagation: calculate dW1, db1, dW2, db2.

dZ2 = A2 - Y

dW2 = 1 / m * np.dot(dZ2, A1.T)

db2 = 1 / m * np.sum(dZ2, axis = 1, keepdims = True)

dZ1 = np.dot(W2.T, dZ2) * (1 - np.power(A1, 2))

dW1 = 1 / m * np.dot(dZ1, X.T)

db1 = 1 / m * np.sum(dZ1, axis = 1, keepdims = True)

grads = {"dW1": dW1,

"db1": db1,

"dW2": dW2,

"db2": db2}

return grads

def update_parameters(parameters, grads, learning_rate = 0.8):

# Retrieve each parameter from the dictionary "parameters"

W1 = parameters["W1"]

b1 = parameters["b1"]

W2 = parameters["W2"]

b2 = parameters["b2"]

# Retrieve each gradient from the dictionary "grads"

dW1 = grads["dW1"]

db1 = grads["db1"]

dW2 = grads["dW2"]

db2 = grads["db2"]

# Update rule for each parameter

W1 = W1 - learning_rate * dW1

b1 = b1 - learning_rate * db1

W2 = W2 - learning_rate * dW2

b2 = b2 - learning_rate * db2

parameters = {"W1": W1,

"b1": b1,

"W2": W2,

"b2": b2}

return parameters

def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):

np.random.seed(3)

n_x = X.shape[0]

n_y = Y.shape[0]

# Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".

parameters = initialize_parameters(n_x, n_h, n_y)

W1 = parameters["W1"]

b1 = parameters["b1"]

W2 = parameters["W2"]

b2 = parameters["b2"]

# Loop (gradient descent)

for i in range(0, num_iterations):

# Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".

A2, cache = forward_propagation(X, parameters)

# Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".

cost = compute_cost(A2, Y, parameters)

# Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".

grads = backward_propagation(parameters, cache, X, Y)

# Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".

parameters = update_parameters(parameters, grads)

# Print the cost every 1000 iterations

if print_cost and i % 1000 == 0:

print ("Cost after iteration %i: %f" %(i, cost))

return parameters

def predict(parameters, X):

# Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.

A2, cache = forward_propagation(X, parameters)

predictions = A2 > 0.5

return predictions

X, Y = load_planar_dataset()

# Build a model with a n_h-dimensional hidden layer

parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)

# Plot the decision boundary

plot_decision_boundary(lambda x: predict(parameters, x.T), X, np.squeeze(Y))

plt.title("Decision Boundary for hidden layer size " + str(4))

# planar_utils.py

import matplotlib.pyplot as plt

import numpy as np

import sklearn

import sklearn.datasets

import sklearn.linear_model

def plot_decision_boundary(model, X, y):

# Set min and max values and give it some padding

x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1

y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1

h = 0.01

# Generate a grid of points with distance h between them

# 创造网格,以0.01为间隔划分整个区间

xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

# Predict the function value for the whole grid

# 计算每个网格点上的预测结果

Z = model(np.c_[xx.ravel(), yy.ravel()])

# 将预测结果变形为与网格形式一致

Z = Z.reshape(xx.shape)

# Plot the contour and training examples

# xx是x轴值, yy是y轴值, Z是预测结果值, cmap表示采用什么颜色

plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) #等位线

plt.ylabel('x2')

plt.xlabel('x1')

plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)

def sigmoid(x):

"""

Compute the sigmoid of x

Arguments:

x -- A scalar or numpy array of any size.

Return:

s -- sigmoid(x)

"""

s = 1/(1+np.exp(-x))

return s

def load_planar_dataset():

np.random.seed(1)

m = 400 # number of examples

N = int(m/2) # number of points per class

D = 2 # dimensionality

X = np.zeros((m,D)) # data matrix where each row is a single example

Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)

a = 4 # maximum ray of the flower

for j in range(2):

ix = range(N*j,N*(j+1))

t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta

r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius

X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]

Y[ix] = j

X = X.T

Y = Y.T

return X, Y

def load_extra_datasets():

N = 200

noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)

noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)

blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)

gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)

no_structure = np.random.rand(N, 2), np.random.rand(N, 2)

return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值