机器学习——10 KMeans聚类

目录

1.  KMeans模型

2.  KMeans模型代码

2.1 python实现

2.2 Sklearn实现

3. Kmeans算法存在的四个问题

3.1 初始质心的选取

3.1.1 解决方法:

 3.1.2 优化代码实现:

 3.2 K值的选取

 3.2.1 解决方法:

3.2.2 肘部法则代码:

3.3 存在局限性

 3.3.1 解决方法:

3.3.2 sklearn_DBSCAN代码

3.4 数据较大,收敛较慢

3.4.1 解决方法:

3.4.2 Mini Batch KMeans代码


聚类和分类的区别:

        分类算法中数据带有标签,而聚类无标签。

用途:

        寻找优质客户、社区发现、异常点监控(信用卡诈骗与黑客攻击)

1.  KMeans模型

  • 算法接受参数k:然后将事先输入的n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。
  • 算法思想∶以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果

步骤:

  1. 先从没有标签的元素集合A中随机取k个元素,作为k个子集各自的重心。
  2. 分别计算剩下的元素到k个子集重心的距离(这里的距离也可以使用欧氏距离),根据距离将这些元素分别划归到最近的子集。
  3. 根据聚类结果,重新计算重心(重心的计算方法是计算子集中所有元素各个维度的算数平均数)。
  4. 将集合A中全部元素按照新的重心然后再重新聚类。5.重复第4步,直到聚类结果不再发生变化。

eg:

2.  KMeans模型代码

2.1 python实现

画出散点图大概看可以分几类

# 载入数据
data = np.genfromtxt("kmeans.txt", delimiter=" ")

plt.scatter(data[:,0],data[:,1])
plt.show()

数据一共有80个样本,每个样本有2个特征

import numpy as np
import matplotlib.pyplot as plt

# 载入数据
data = np.genfromtxt("kmeans.txt", delimiter=" ")

plt.scatter(data[:,0],data[:,1])
plt.show()

print(data.shape)
# (80, 2)



# 训练模型
# 计算距离
def euclDistance(vector1, vector2):
    return np.sqrt(sum((vector2 - vector1) ** 2))


# 初始化质心
def initCentroids(data, k):
    numSamples, dim = data.shape
    # k个质心,列数跟样本的列数一样
    centroids = np.zeros((k, dim))
    # 随机选出k个质心
    for i in range(k):
        # 随机选取一个样本的索引
        index = int(np.random.uniform(0, numSamples))
        # 作为初始化的质心
        centroids[i, :] = data[index, :]
    return centroids


# 传入数据集和k的值
def kmeans(data, k):
    # 计算样本个数
    numSamples = data.shape[0]
    # 样本的属性,第一列保存该样本属于哪个簇,第二列保存该样本跟它所属簇的误差
    clusterData = np.array(np.zeros((numSamples, 2)))
    # 决定质心是否要改变的变量
    clusterChanged = True

    # 初始化质心
    centroids = initCentroids(data, k)

    while clusterChanged:
        clusterChanged = False
        # 循环每一个样本
        for i in range(numSamples):
            # 最小距离
            minDist = 100000.0
            # 定义样本所属的簇
            minIndex = 0
            # 循环计算每一个质心与该样本的距离
            for j in range(k):
                # 循环每一个质心和样本,计算距离
                distance = euclDistance(centroids[j, :], data[i, :])
                # 如果计算的距离小于最小距离,则更新最小距离
                if distance < minDist:
                    minDist = distance
                    # 更新最小距离
                    clusterData[i, 1] = minDist
                    # 更新样本所属的簇
                    minIndex = j

                    # 如果样本的所属的簇发生了变化
            if clusterData[i, 0] != minIndex:
                # 质心要重新计算
                clusterChanged = True
                # 更新样本的簇
                clusterData[i, 0] = minIndex

        # 更新质心
        for j in range(k):
            # 获取第j个簇所有的样本所在的索引
            cluster_index = np.nonzero(clusterData[:, 0] == j)
            # 第j个簇所有的样本点
            pointsInCluster = data[cluster_index]
            # 计算质心
            centroids[j, :] = np.mean(pointsInCluster, axis=0)
        #         showCluster(data, k, centroids, clusterData)

    return centroids, clusterData


# 显示结果
def showCluster(data, k, centroids, clusterData):
    numSamples, dim = data.shape
    if dim != 2:
        print("dimension of your data is not 2!")
        return 1

        # 用不同颜色形状来表示各个类别
    mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
    if k > len(mark):
        print("Your k is too large!")
        return 1

        # 画样本点
    for i in range(numSamples):
        markIndex = int(clusterData[i, 0])
        plt.plot(data[i, 0], data[i, 1], mark[markIndex])

        # 用不同颜色形状来表示各个类别
    mark = ['*r', '*b', '*g', '*k', '^b', '+b', 'sb', 'db', '<b', 'pb']
    # 画质心点
    for i in range(k):
        plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize=20)

    plt.show()








# 设置k值
k = 4
# centroids 簇的中心点
# cluster Data样本的属性,第一列保存该样本属于哪个簇,第二列保存该样本跟它所属簇的误差
centroids, clusterData = kmeans(data, k)
if np.isnan(centroids).any():
    print('Error')
else:
    print('cluster complete!')
    # 显示结果
showCluster(data, k, centroids, clusterData)

print(centroids)





# 做预测
x_test = [0,1]
print(np.tile(x_test,(k,1)))

# 误差平方
print((np.tile(x_test,(k,1))-centroids)**2)

# 误差平方和
print(((np.tile(x_test,(k,1))-centroids)**2).sum(axis=1))

# 最小值所在的索引号
print(np.argmin(((np.tile(x_test,(k,1))-centroids)**2).sum(axis=1)))

def predict(datas):
    return np.array([np.argmin(((np.tile(data,(k,1))-centroids)**2).sum(axis=1)) for data in datas])

# 画出簇的作用区域
# 获取数据值所在的范围
x_min, x_max = data[:, 0].min() - 1, data[:, 0].max() + 1
y_min, y_max = data[:, 1].min() - 1, data[:, 1].max() + 1

# 生成网格矩阵
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                     np.arange(y_min, y_max, 0.02))

z = predict(np.c_[xx.ravel(), yy.ravel()])# ravel与flatten类似,多维数据转一维。flatten不会改变原始数据,ravel会改变原始数据
z = z.reshape(xx.shape)
# 等高线图
cs = plt.contourf(xx, yy, z)
# 显示结果
showCluster(data, k, centroids, clusterData)

2.2 Sklearn实现

from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt

# 载入数据
data = np.genfromtxt("kmeans.txt", delimiter=" ")
# 设置k值
k = 4

# 训练模型
model = KMeans(n_clusters=k)
model.fit(data)

# 分类中心点坐标
centers = model.cluster_centers_
print(centers)

# 预测结果
result = model.predict(data)
print(result)

print(model.labels_)

# 画出各个数据点,用不同颜色表示分类
mark = ['or', 'ob', 'og', 'oy']
for i, d in enumerate(data):
    plt.plot(d[0], d[1], mark[result[i]])

# 画出各个分类的中心点
mark = ['*r', '*b', '*g', '*y']
for i, center in enumerate(centers):
    plt.plot(center[0], center[1], mark[i], markersize=20)

plt.show()

# 获取数据值所在的范围
x_min, x_max = data[:, 0].min() - 1, data[:, 0].max() + 1
y_min, y_max = data[:, 1].min() - 1, data[:, 1].max() + 1

# 生成网格矩阵
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                     np.arange(y_min, y_max, 0.02))

z = model.predict(np.c_[xx.ravel(), yy.ravel()])  # ravel与flatten类似,多维数据转一维。flatten不会改变原始数据,ravel会改变原始数据
z = z.reshape(xx.shape)
# 等高线图
cs = plt.contourf(xx, yy, z)
# 显示结果
# 画出各个数据点,用不同颜色表示分类
mark = ['or', 'ob', 'og', 'oy']
for i, d in enumerate(data):
    plt.plot(d[0], d[1], mark[result[i]])

# 画出各个分类的中心点
mark = ['*r', '*b', '*g', '*y']
for i, center in enumerate(centers):
    plt.plot(center[0], center[1], mark[i], markersize=20)

plt.show()

3. Kmeans算法存在的四个问题

3.1 初始质心的选取

对k个初始质心的选择比较敏感,容易陷入局部最小值。
例如,我们上面的算法运行的时候,有可能会得到不同的结果,如下面这两种情况。K-means也是收敛了,只是收敛到了局部最小值。

3.1.1 解决方法:

使用多次的随机初始化,计算每一次建模得到的代价函数的值,选取代价函数最小结果作为聚类结果。

 3.1.2 优化代码实现:

import numpy as np
import matplotlib.pyplot as plt

# 载入数据
data = np.genfromtxt("kmeans.txt", delimiter=" ")

plt.scatter(data[:,0],data[:,1])
plt.show()

print(data.shape)
# (80, 2)



# 训练模型
# 计算距离
def euclDistance(vector1, vector2):
    return np.sqrt(sum((vector2 - vector1) ** 2))


# 初始化质心
def initCentroids(data, k):
    numSamples, dim = data.shape
    # k个质心,列数跟样本的列数一样
    centroids = np.zeros((k, dim))
    # 随机选出k个质心
    for i in range(k):
        # 随机选取一个样本的索引
        index = int(np.random.uniform(0, numSamples))
        # 作为初始化的质心
        centroids[i, :] = data[index, :]
    return centroids


# 传入数据集和k的值
def kmeans(data, k):
    # 计算样本个数
    numSamples = data.shape[0]
    # 样本的属性,第一列保存该样本属于哪个簇,第二列保存该样本跟它所属簇的误差
    clusterData = np.array(np.zeros((numSamples, 2)))
    # 决定质心是否要改变的变量
    clusterChanged = True

    # 初始化质心
    centroids = initCentroids(data, k)

    while clusterChanged:
        clusterChanged = False
        # 循环每一个样本
        for i in range(numSamples):
            # 最小距离
            minDist = 100000.0
            # 定义样本所属的簇
            minIndex = 0
            # 循环计算每一个质心与该样本的距离
            for j in range(k):
                # 循环每一个质心和样本,计算距离
                distance = euclDistance(centroids[j, :], data[i, :])
                # 如果计算的距离小于最小距离,则更新最小距离
                if distance < minDist:
                    minDist = distance
                    # 更新最小距离
                    clusterData[i, 1] = minDist
                    # 更新样本所属的簇
                    minIndex = j

                    # 如果样本的所属的簇发生了变化
            if clusterData[i, 0] != minIndex:
                # 质心要重新计算
                clusterChanged = True
                # 更新样本的簇
                clusterData[i, 0] = minIndex

        # 更新质心
        for j in range(k):
            # 获取第j个簇所有的样本所在的索引
            cluster_index = np.nonzero(clusterData[:, 0] == j)
            # 第j个簇所有的样本点
            pointsInCluster = data[cluster_index]
            # 计算质心
            centroids[j, :] = np.mean(pointsInCluster, axis=0)
        #         showCluster(data, k, centroids, clusterData)

    return centroids, clusterData


# 显示结果
def showCluster(data, k, centroids, clusterData):
    numSamples, dim = data.shape
    if dim != 2:
        print("dimension of your data is not 2!")
        return 1

        # 用不同颜色形状来表示各个类别
    mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
    if k > len(mark):
        print("Your k is too large!")
        return 1

        # 画样本点
    for i in range(numSamples):
        markIndex = int(clusterData[i, 0])
        plt.plot(data[i, 0], data[i, 1], mark[markIndex])

        # 用不同颜色形状来表示各个类别
    mark = ['*r', '*b', '*g', '*k', '^b', '+b', 'sb', 'db', '<b', 'pb']
    # 画质心点
    for i in range(k):
        plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize=20)

    plt.show()


# 设置k值
k = 4

min_loss = 10000
min_loss_centroids = np.array([])
min_loss_clusterData = np.array([])

for i in range(50):
    # centroids 簇的中心点
    # cluster Data样本的属性,第一列保存该样本属于哪个簇,第二列保存该样本跟它所属簇的误差
    centroids, clusterData = kmeans(data, k)
    loss = sum(clusterData[:, 1]) / data.shape[0]
    if loss < min_loss:
        min_loss = loss
        min_loss_centroids = centroids
        min_loss_clusterData = clusterData

#     print('loss',min_loss)
print('cluster complete!')
centroids = min_loss_centroids
clusterData = min_loss_clusterData

# 显示结果
showCluster(data, k, centroids, clusterData)

print(centroids)





# 做预测
x_test = [0,1]
print(np.tile(x_test,(k,1)))

# 误差平方
print((np.tile(x_test,(k,1))-centroids)**2)

# 误差平方和
print(((np.tile(x_test,(k,1))-centroids)**2).sum(axis=1))

# 最小值所在的索引号
print(np.argmin(((np.tile(x_test,(k,1))-centroids)**2).sum(axis=1)))

def predict(datas):
    return np.array([np.argmin(((np.tile(data,(k,1))-centroids)**2).sum(axis=1)) for data in datas])

# 画出簇的作用区域
# 获取数据值所在的范围
x_min, x_max = data[:, 0].min() - 1, data[:, 0].max() + 1
y_min, y_max = data[:, 1].min() - 1, data[:, 1].max() + 1

# 生成网格矩阵
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                     np.arange(y_min, y_max, 0.02))

z = predict(np.c_[xx.ravel(), yy.ravel()])# ravel与flatten类似,多维数据转一维。flatten不会改变原始数据,ravel会改变原始数据
z = z.reshape(xx.shape)
# 等高线图
cs = plt.contourf(xx, yy, z)
# 显示结果
showCluster(data, k, centroids, clusterData)

 3.2 K值的选取

k值的选择是用户指定的,不同的k得到的结果会有挺大的不同,如下图所示,左边是k=3的结果,蓝色的簇太稀疏了,蓝色的簇应该可以再划分成两个簇。右边是k=5的结果,红色和蓝色的簇应该合并为一个簇。

 3.2.1 解决方法:

有两种——①肘部法则

3.2.2 肘部法则代码:

在前面代价函数基础上改进:

list_lost = []
for k in range(2,10):
    min_loss = 10000
    min_loss_centroids = np.array([])
    min_loss_clusterData = np.array([])
    for i in range(50):
        # centroids 簇的中心点 
        # cluster Data样本的属性,第一列保存该样本属于哪个簇,第二列保存该样本跟它所属簇的误差
        centroids, clusterData = kmeans(data, k)  
        loss = sum(clusterData[:,1])/data.shape[0]
        if loss < min_loss:
            min_loss = loss
            min_loss_centroids = centroids
            min_loss_clusterData = clusterData
    list_lost.append(min_loss)

print(list_lost)

plt.plot(range(2,10),list_lost)
plt.xlabel('k')
plt.ylabel('loss')
plt.show()

3.3 存在局限性

对于非球状的数据分布无法分类

 3.3.1 解决方法:

密度聚类算法

DBSCAN:Density Based Spatial Clustering of Applications with Noise

特点:将具有足够高密度的区域划分为簇,并可以发现任何形状的聚类。

特有定义:

\varepsilon邻域:给定对象半径\varepsilon内的区域称为该对象的\varepsilon邻域。 

②核心对象: 如果给定\varepsilon邻域内的样本点数大于等于Minpoints,则该对象为核心对象。

③直接密度可达:给定一个对象集合D,如果p在q的\varepsilon邻域内,且q是一个核心对象,则我们说对象p从q出发是直接密度可达的(directly density reachable)

④密度可达:集合D,存在一个对象链p1,p2,……pn,p1=q,pn=p,pi+1是从pi关于\varepsilon和Minpoints直接密度可达,则称点p是从q关于\varepsilon和Minpoints密度可达的。

⑤密度相连: 集合D存在点o,使得点p、q是从o关于\varepsilon和  Minpoints密度可达,那么点p、q是关于\varepsilon和Minpoints密度相连的。

 算法思想:

  1. 指定合适的\varepsilon和Minpoints。
  2. 计算所有的样本点,如果点p的\varepsilon邻域里有超过Minpoints个点,则创建一个以点p为核心的新簇。
  3. 反复寻找这些核心点直接密度可达(之后可能是密度可达)的点,将其加入到相应的簇,对于核心点发生“密度相连”状况的簇,给予合并。
  4. 当没有新的点可以被添加到任何簇时,算法结束。

缺点:

  • 当数据量增大时,要求较大的内存支持与I/O消耗也很大。
  • 当空间聚类的密度不均匀、聚类间距相差很大时,聚类质量较差。

DBSCAN和Kmeans比较:

  • DBSCAN不需要输入聚类个数;
  • 聚类簇的形状没有要求;
  • 可以在需要时输入过滤噪声的参数——即\varepsilon和Minpoints。

3.3.2 sklearn_DBSCAN代码

from sklearn.cluster import DBSCAN
import numpy as np
import matplotlib.pyplot as plt

# 载入数据
data = np.genfromtxt("kmeans.txt", delimiter=" ")

# 训练模型
# eps距离阈值,min_samples核心对象在eps领域的样本数阈值
model = DBSCAN(eps=1.5, min_samples=4)
model.fit(data)

result = model.fit_predict(data)
print(result)

# 画出各个数据点,用不同颜色表示分类
mark = ['or', 'ob', 'og', 'oy', 'ok', 'om']
for i, d in enumerate(data):
    plt.plot(d[0], d[1], mark[result[i]])

plt.show()

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

x1, y1 = datasets.make_circles(n_samples=2000, factor=0.5, noise=0.05)
x2, y2 = datasets.make_blobs(n_samples=1000, centers=[[1.2,1.2]], cluster_std=[[.1]])

x = np.concatenate((x1, x2))
plt.scatter(x[:, 0], x[:, 1], marker='o')
plt.show()


from sklearn.cluster import DBSCAN
y_pred = DBSCAN().fit_predict(x)
plt.scatter(x[:, 0], x[:, 1], c=y_pred)
plt.show()

y_pred = DBSCAN(eps = 0.2, min_samples=50).fit_predict(x)
plt.scatter(x[:, 0], x[:, 1], c=y_pred)
plt.show()

3.4 数据较大,收敛较慢

3.4.1 解决方法:

Mini Banch Kmeans

Mini Batch K-Means算法是Kmeans算法的变种,采用小批量的数据子集减少计算时间。这里所谓的小批量是指每次训练算法时随机抽取的数据子集,采用这些随机产生的子集进行训练算法,大大减小了计算时间,结果一般只略差于标准算法。


该算法的迭代步骤有两步:

  1. 从数据集中随机抽取一些数据形成小批量,把他们分配给最近的质心
  2. 更新质心:与K均值算法相比,数据的更新是在每一个小的样本集上。Mini Batch K-Means比K-Means有更快的收敛速度,但同时也降低了聚类的效果,但是在实际项目中却表现得不明显。

3.4.2 Mini Batch KMeans代码

和Kmeans几乎一样

from sklearn.cluster import MiniBatchKMeans
import numpy as np
import matplotlib.pyplot as plt

# 载入数据
data = np.genfromtxt("kmeans.txt", delimiter=" ")
# 设置k值
k = 4

# 训练模型
model = MiniBatchKMeans(n_clusters=k)
model.fit(data)

# 分类中心点坐标
centers = model.cluster_centers_
print(centers)

# 预测结果
result = model.predict(data)
print(result)

print(model.labels_)

# 画出各个数据点,用不同颜色表示分类
mark = ['or', 'ob', 'og', 'oy']
for i, d in enumerate(data):
    plt.plot(d[0], d[1], mark[result[i]])

# 画出各个分类的中心点
mark = ['*r', '*b', '*g', '*y']
for i, center in enumerate(centers):
    plt.plot(center[0], center[1], mark[i], markersize=20)

plt.show()

# 获取数据值所在的范围
x_min, x_max = data[:, 0].min() - 1, data[:, 0].max() + 1
y_min, y_max = data[:, 1].min() - 1, data[:, 1].max() + 1

# 生成网格矩阵
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                     np.arange(y_min, y_max, 0.02))

z = model.predict(np.c_[xx.ravel(), yy.ravel()])  # ravel与flatten类似,多维数据转一维。flatten不会改变原始数据,ravel会改变原始数据
z = z.reshape(xx.shape)
# 等高线图
cs = plt.contourf(xx, yy, z)
# 显示结果
# 画出各个数据点,用不同颜色表示分类
mark = ['or', 'ob', 'og', 'oy']
for i, d in enumerate(data):
    plt.plot(d[0], d[1], mark[result[i]])

# 画出各个分类的中心点
mark = ['*r', '*b', '*g', '*y']
for i, center in enumerate(centers):
    plt.plot(center[0], center[1], mark[i], markersize=20)

plt.show()


 

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值