张凯院 矩阵论学习_高等代数(线性代数)的50个学习要点(三)

本文介绍了矩阵的特征值、特征向量与对角化,强调了它们在高等代数中的核心作用。讨论了矩阵可对角化的条件,以及二次型的施密特正交化、主轴定理、非退化线性替换和实正定二次型的判定。通过实例解析了如何化简和判断矩阵的性质。
摘要由CSDN通过智能技术生成

第五章  矩阵的特征值与对角化

为了与线性代数的历史发展尽量相吻合,我们先在本章讲矩阵的特征值与对角化,然后在后面的第八章再来讲线性变换的特征值与对角化。这样的安排在总体上有不少好处,首先矩阵的特征值对学生来说比较容易理解,而线性变换的特征值则比较难理解。其次是这样可以避免传统高等代数课程中将配方法化简二次型与主轴定理化简二次型分开来讲的弊端。

实际上,先讲矩阵的特征值和对角化的做法也为学生顺利理解后面的线性变换的特征值与对角化作好了充分的准备。由于求解特征向量要用到行列式、线性方程组和多项式等多方面的相关知识,我们也可以将矩阵的特征值与对角化看成是联系整个高等代数(或线性代数)课程各部分内容的一个中心纽带。

本章先引入矩阵特征值与特征向量的概念,然后着重给出阶方阵可对角化的充要条件,即具备个线性无关的特征向量。接下来讲解矩阵特征值的基本性质,然后再引出相似矩阵的概念,并讨论它们的基本性质。

学习要点23:矩阵的特征值与特征向量

对于矩阵的乘法来说,和对角矩阵作乘法是最容易计算的。矩阵的对角化就是试图将所有的方阵都尽量与一个对角矩阵联系起来。此时就需要矩阵的特征值与特征向量的概念。若对阶方阵,存在数和向量满足 ,则称是的一个特征值,是的属于的一个特征向量。

计算矩阵的特征值与特征向量的基本方法是:

(1)求出特征方程的全部根,这些根就是的全部特征值;
(2)对每个特征值,求出齐次线性方程组的基础解系,它们就是的属于特征值的线性无关的特征向量。

习题5.1 已知矩阵

求.

提示:为了将矩阵进行对角化,我们需要先求出方阵的特征值和特征向量.不难计算,矩阵的属于特征值的特征向量,属于特征值的特征向量.由此三个特征向量作列向量的三阶矩阵记为

由此可知

再对上述等式作100次乘积,立得结果.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值