序列的卷积和运算及其过程的可视化呈现_卷积大乱炖

这里是一则小广告:

关注作者请点击这里哦:zdr0

我的专栏里面不仅有学习笔记,也有一些科普文章,相信我的专栏不会让您失望哦~大家可以关注一下:数学及自然科学

记得点赞加收藏哦~

创作不易,请赞赏一下支持一下作者吧[期待]~

-尽力写最好的讲义,尽力写最好的科普。


大家好,之前我写了一篇有关卷积的文章,在那篇文章的后半部分我犯了一个十分严重的错误(我现在也很奇怪我当时究竟是怎么自圆其说的[摊手]),现在我已经将那篇文章删除了,实在抱歉误导了大家。

所以,我打算再写一篇更为详尽的有关卷积的文章。在这篇文章中包含的内容有:矢量的卷积,函数的卷积,离散卷积和循环卷积。废话不多说我们就直接开始吧。

还有一部分很重要的卷积——快速卷积,但是快速卷积涉及到一些信号处理的知识,所以,将来如果有机会的话我会单独写一篇关于快速卷积的文章。


矢量的卷积
函数的卷积
离散卷积
循环卷积

卷积,顾名思义,是 将乘积卷起来。

首先我们来学习一下两个矢量是如何进行卷积的。在学习矢量的卷积之前,我们现在学习一个概念——矢量的张量积。我们以

下的矢量举例说明。

则矢量

的张量积为:

对于两个不同维数的矢量我们也可以对二者进行张量积运算,比如:

则矢量

的张量积为:

需要注意的是参与张量积运算的两个矢量的位置是不可随意调换的!因为和明显在一般情况下:

相同维数的两个矢量之间的张量积的特殊情况是并矢积。即式

也可称为两个矢量的并矢积。

了解了矢量的张量积之后我们就可以来看看两个矢量之间是如何进行卷积的了。现在我们设矢量

则张量积

为:

现在我们要做的就是将上面图中的相同颜色的项加起来,然后在写成矢量的形式就是矢量

的卷积了,即:

一般情况下有:

注:这里的一般情况指的是矢量
可以具有不同的维数。

计算矢量:

的卷积

首先:

则:

其次:

则:

我们可以这样通俗地理解一下两个矢量的卷积:如果我们将矩阵

想象成为一块格子布的话(如果矢量
的维数和矢量
的维数是相等的,那么这块布就是一块正方形的布,否则这块布就是一块矩形的布)那么矢量
和矢量
的张量积的结果就可以被视作
按照对应位置放在这个格子布中的每一个格子中,然后我们将这块格子布从左上到右下卷起来,每卷一次都做一次求和运算,并记录结果,卷到最后一次时这块布就已经是一条了,最后 将这一条布竖起来就是矢量
和矢量
卷积的结果了。
(可以对比一下例子哦,我特意着了色,每一种颜色就代表一次卷的动作)

首先我们来看一下两个函数的卷积的定义。

是两个定义在
上的可测函数,
卷积定义为:

它是其中一个函数翻转平移后与另一个函数的乘积的积分,是一个对平移量的函数。

特别地,当

时(接下来我们只研究
下的卷积),如果
上的可积函数,做积分:

可以证明,关于几乎所有的

,上述积分是存在的。这样,随着
的不同取值,这个积分就定义了一个新函数
,称为函数
的卷积,记为:

在继续讲解函数的卷积之前,我们先来复习一下函数图像对称变换和平移变换。

  • 函数的对称变换
    函数
    与函数
    关于
    轴对称;
    函数
    与函数
    关于
    轴对称;
    函数
    与函数
    关于原点轴对称。
  • 函数的平移变换
    是将函数
    的图像向左平移了
    个单位;
    是将函数
    的图像向右平移了
    个单位;
    是将函数
    的图像先关于
    轴对称,然后向右平移了
    个单位;
    是将函数
    的图像先关于
    轴对称,然后向左平移了
    个单位。

设函数

4eb1c071354ba8ab62b1ad0a7350455f.png
图片2.1

对称变换

平移变换:

复习过函数图像的基本变换之后我们就可以来继续讲解函数的卷积啦。

有之前函数的卷积的定义我们知道,它是其中一个函数翻转平移后与另一个函数的乘积的积分。那么我们先将

下的卷积定义式拿过来:

现在我们先来研究被积函数:

那么根据定义这两个函数中究竟哪个函数是被翻转加平移了,而哪个函数是定义中的“另一个函数”呢?答案是

是定义中的“另一个函数”,因为对于函数
来讲,只是将它的自变量
换成了
而已(换了一个字母),也就是说
轴被换成了
轴。而函数
就是被翻转和平移的函数了,这是为什么呢?首先,我们将
改写为
,且一般而言
,现在在函数
中,自变量是
,而
是平移量,所以由之前的函数的平移变换中的
我们可以知道函数
是先将函数
关于
轴对称变成
,然后在向右平移
个单位得到。

对于函数

含有
第二种理解方式:就是先将函数
向右平移
个单位得到函数
,然后在将函数
关于
轴对称得到

图片2.2所展示的过程就是第一种理解方式的过程:

958d9b8d68b0518109faf1c6f74b857b.png
图片2.2

图片2.2中变换后的

中平移量
,那么为何称
为平移量呢?因为当
取不同的值时
好像沿着
轴滑动起来一样(即当
取不同的值的时候,
沿
轴的平移量也不一样),如图片2.3所示:

962f064e308698601fce6203879d63b6.png
图片2.3

所以,当

变化到
时,
相当于从整个
轴上滑过。

现在被积函数解释完了,现在我们来解释一下卷积的定义式:

首先,我们要明确地一个问题是,定积分:

的几何意义是在积分区间

上,被积函数
轴所围成的面积。而在式
中我们发现积分区间是
,被积函数就是我们刚刚解释过的函数啦。所以广义积分
表示的就是在积分区间
上,被积函数
轴围成的面积。而不要忘了当
变化到
时,
是相当于从整个
轴上滑过的,所以,在
滑动的过程中,它的图像难免会与
的图像交会,当然,也会有一段时间两者的图像不交会(比如图片2.3中所示),如果两个的图像没有交会的话,那么式
的积分值总为零,而两函数交会时,式
会计算交会范围中两函数乘积的积分值。而这个积分值是个关于
的函数,即定义中的
它表示的是以
为权重函数,函数
的加权值
。具体过程如图片2.4所示:

dac2a237be7546ce4849199f10fda684.gif
图片2.4

此外,函数的卷积也满足交换律,即:

我们还是先来看一下离散卷积的定义式。

对于两个给定的离散序列

,那么两者的离散卷积定义为:

离散卷积与函数的卷积很像,只是将积分号变成的求和号,而且离散卷积也满足交换律。下面我们就通过一个例子来说明如何快速计算离散卷积。

设两个离散序列:

请计算这两个离散序列的卷积

首先,我们与函数卷积的做法一样,先画出

的图像,如图片3.1所示:

b1fa822538b7422b645894a0bcf84866.png
图片3.1

之后由离散卷积的定义式:

我们让

变到
变动的时候
会滑过整个的
轴,这一点与函数的卷积很像:

cfad33821de4867837c4760f05dfac1f.png
图片3.2

图片3.2向我们展示了完整的卷积过程,我们并没有让

变到
,而是让
变到
就足够计算这个问题的卷积了,因为剩下的
值计算出的结果都是零。具体计算的过程是:

所以,最终的结果是:

给定两个长度为

的离散序列
,循环卷积的定义式为:

其中,

分别是序列
的周期延拓。

现在,我们还是通过一个例子来学习一下如何快速计算循环卷积。

设两个离散序列:

请计算这两个离散序列的卷积

首先,我们先将

进行周期延拓得到
,如图片4.1所示:

4589fa6b28887b50dea110ca8f005675.png
图片4.1

之后由循环卷积的定义式:


我们让
变到
变动的时候
会滑过整个的
轴,这一点与离散卷积很像:

908a37fd41d512e85f82e2bc0b254995.png
图片4.2

图片4.2是整个循环卷积的过程,我们并没有让

变到
,而是让
变到
就足够计算这个问题的卷积了,因为剩下的
值计算出的结果是周期性的。具体计算的过程是:


  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值