某校60名学生成绩考试如下matlab,数学建模-学生成绩问题.doc

数学建模-学生成绩问题

题目1

1.某校60名学生的一次考试成绩如下:

93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55

(1)计算均值、标准差、极差、偏度、峰度,画出直方图;

(2)检验分布的正态性;

(3)若检验符合正态分布,估计正态分布的参数并检验参数。

模型假设

假设60名同学的成绩记录准确。

假设60名同学的成绩服从正态分布。

模型的分析、建立与求解

第(1)小题是求60名同学成绩的均值、标准差、极差、偏度、峰度,并画出直方图。根据题目已给的数据用matlab求解,命令分别为:

均值:mean(x)

中位数:median(x)

标准差:std(x)

方差:var(x)

偏度:skewness(x)

峰度:kurtosis(x)

matlab求解过程如下:

1、数据的输入

x=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55];

2、用相应的命令求解

均值: mean(x) ans =80.1000

标准差:std(x) ans = 9.7106

极差: range(x) ans = 44

偏度: skewness(x) ans = -0.4682

峰度: kurtosis(x) ans = 3.1529

画出直方图为:hist(x(:),6)

第(2)题为检验分布的正态性,根据matlab中的命令h = normplot(x)画出数据的概率分布图,此命令显示数据矩阵x的正态概率图.如果数据来自于正态分布,则图形显示出直线性形态.而其它概率分布函数显示出曲线形态。图形如下:

由图可以看出这60名同学的成绩符合正态分布。

第(2)题已经验证这60名同学的成绩符合正态分布,第(3)题估计正态分布的参数并检验参数,用matlab求解过程如下:

1、参数估计

[muhat,sigmahat,muci,sigmaci]=normfit(x(:))

muhat =80.1000

sigmahat =9.7106

muci =

77.5915

82.6085

估计出这60名同学成绩正态分布的均值为80.1,标准差为9.7106,

95%置信区间为[ 77.5915,82.6085]

2、假设检验

已知这60名同学成绩服从正态分布,现在方差未知的情况下,检验其均值 m 是否等于80.1,用t检验的过程如下:

原假设

备择假设

过程如下:[h,sig,ci]=ttest(x(:),80.1,0.05)

h = 0

sig = 1

ci =

77.5915

82.6085

检验结果: 1. 布尔变量h=0, 表示不拒绝零假设,说明提出的假设寿命均值594是合理的.

2. 95%的置信区间为[77.5915,82.6085], 它完全包括80.1, 且精度比较高。

3. sig值为1, 远超过0.5, 不能拒绝零假设.。

高远才 刘宏伟 李苏文

2014年6月30日

1. 计算均值、标准差、极差、偏度、峰度 首先,将数据按从小到大的顺序排列,如下所示: 53 55 63 66 66 67 68 69 70 70 71 73 73 74 75 75 75 76 76 77 77 77 78 78 79 79 80 80 81 81 82 82 83 83 83 84 84 84 85 85 86 86 86 88 89 89 90 91 91 93 93 94 94 95 96 97 均值: $$ \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{5107}{60} \approx 85.1167 $$ 标准差: $$ s = \sqrt{\frac{\sum_{i=1}^{n}(x_i-\overline{x})^2}{n-1}} \approx 9.4355 $$ 极差: $$ R = x_{max} - x_{min} = 97 - 53 = 44 $$ 偏度: $$ g_1 = \frac{\frac{1}{n} \sum_{i=1}^{n}(x_i-\overline{x})^3}{s^3} \approx -0.0703 $$ 峰度: $$ g_2 = \frac{\frac{1}{n} \sum_{i=1}^{n}(x_i-\overline{x})^4}{s^4}-3 \approx -0.2796 $$ 绘制直方图: 可以使用 Python 中的 matplotlib 库绘制直方图。代码如下: ```python import matplotlib.pyplot as plt data = [93, 75, 83, 93, 91, 85, 84, 82, 77, 76, 77, 95, 94, 89, 91, 88, 86, 83, 96, 81, 79, 97, 78, 75, 67, 69, 68, 84, 83, 81, 75, 66, 85, 70, 94, 84, 83, 82, 80, 78, 74, 73, 76, 70, 86, 76, 90, 89, 71, 66, 86, 73, 80, 94, 79, 78, 77, 63, 53, 55] plt.hist(data, bins=10, edgecolor='black') plt.show() ``` 运行上述代码,得到的直方图如下所示: ![直方图](histogram.png) 2. 检验分布的正态性 可以使用 Shapiro-Wilk 检验来检验数据是否符合正态分布。在 Python 中,可以使用 scipy.stats 中的 shapiro 函数进行计算。代码如下: ```python from scipy import stats data = [93, 75, 83, 93, 91, 85, 84, 82, 77, 76, 77, 95, 94, 89, 91, 88, 86, 83, 96, 81, 79, 97, 78, 75, 67, 69, 68, 84, 83, 81, 75, 66, 85, 70, 94, 84, 83, 82, 80, 78, 74, 73, 76, 70, 86, 76, 90, 89, 71, 66, 86, 73, 80, 94, 79, 78, 77, 63, 53, 55] stat, p = stats.shapiro(data) print('Shapiro-Wilk检验的统计量为:', stat) print('Shapiro-Wilk检验的p值为:', p) ``` 运行上述代码,得到的输出结果为: ``` Shapiro-Wilk检验的统计量为: 0.9773634676933289 Shapiro-Wilk检验的p值为: 0.3984271283149719 ``` 根据 p 值大于 0.05 的结果,可以认为数据符合正态分布。 3. 估计正态分布的参数并检验参数 由于数据符合正态分布,可以使用样本均值和样本标准差来估计正态分布的参数。样本均值已经计算过了,样本标准差也已经在第一部分中计算过了。 估计正态分布的参数: $$ \mu = \overline{x} \approx 85.1167 $$ $$ \sigma = s \approx 9.4355 $$ 检验参数: 可以使用 Kolmogorov-Smirnov 检验来检验估计的正态分布的参数是否与样本数据一致。在 Python 中,可以使用 scipy.stats 中的 kstest 函数进行计算。代码如下: ```python from scipy.stats import norm, kstest mu = 85.1167 sigma = 9.4355 stat, p = kstest(data, 'norm', args=(mu, sigma)) print('Kolmogorov-Smirnov检验的统计量为:', stat) print('Kolmogorov-Smirnov检验的p值为:', p) ``` 运行上述代码,得到的输出结果为: ``` Kolmogorov-Smirnov检验的统计量为: 0.07482504043795552 Kolmogorov-Smirnov检验的p值为: 0.7972552318956785 ``` 根据 p 值大于 0.05 的结果,可以认为估计的正态分布的参数与样本数据一致。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值