matlab 颜色与数值对应_第1篇.(转载)colormap渐变色——matlab

本文介绍了MATLAB中的colormap原理及其应用,包括如何设置和自定义颜色映射,以及颜色如何在fill或patch中显示。通过示例展示了颜色值与colormap的线性映射关系,以及未指定颜色值区域的处理方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

matlab中,每个figure都有(而且仅有)一个colormap,翻译过来就是色图

COLORMAP(MAP) 用MAP矩阵映射当前图形的色图。
COLORMAP('default') 默认的设置是 JET.
MAP = COLORMAP 获得当前色图矩阵.
COLORMAP(AX,...) 应用色图到AX坐标对应的图形,而非当前图形。

colormap实际上是一个mx3的矩阵,每一行的3个值都为0-1之间数,分别代表颜色组成的rgb值,如[0 0 1]代表蓝色。系统自带了一些colormap,如:winter、autumn等。输入winter,就可以看到它是一个64x3的矩阵。用户可以自定义自己的colormap,而且不一定是64维的。

那么颜色在fill或patch中到底是如何显示的呢?本质上,是把具体的颜色变成colormap中的相应index,也就是行数。这个过程叫做换算映射:将指定的数值颜色向量(矩阵)C,映射到对应的颜色。

在matlab中,图形窗的属性'CdataMapping’缺省设置值为'scaled',也就是线性映射。

映射过程如下:

首先,需要根据caxis取得Cmin和Cmax两个变量(默认值为0和1),画图时如果指定了数值颜色向量(矩阵)C,Cmin和Cmax自动设置为C中的最大值和最小值。当你想控制时,可以自定义。比如将Cmax减小,这样将把所有大于Cmax的C值,全部都映射到同一个颜色(colormap中index最大的行代表的颜色)。

根据Cij在Cmin和Cmax之间的比例关系,确定对应的颜色的index,默认为线性映射。

也就是说,当制定了数值颜色向量(矩阵)C之后画图,图中颜色的使用范围会自动占满整个颜色范围!!!

另外,fill中指定了某些点的颜色值,其他颜色值都是采用插值的方法确定。

例1:

colormap([winter;autumn;summer])%相当于自定义了一个64*3维的colormap
x=[0 1 1 0];
y=[0 0 1 1];
fill(x,y,[0 0.1 0.2 0.3]);%则Cmin=0,Cmax=0.3
colorbar;%显示色图bar

运行结果如下:

5097a0850b9b11ee18f747578518e355.png

例2:

%本例中颜色从[0 0 0] 变化到[1 1 0]
%增加row_cmap的值,如变化到100,则可看到颜色的渐变,而非跳跃型变化。

row_cmap = 15; %定义色图矩阵的行数
color_map1=zeros(row_cmap,3); %定义色图矩阵
color_r = 0:1/(row_cmap-1):1;
color_g = 0:1/(row_cmap-1):1;
color_b = 0:1/(row_cmap-1):1;
color_map1(:,1) = color_r;
color_map1(:,2) = color_g;
colormap(color_map1);
colorbar;

例3:

clc;
clear all;
x=[0 1 1 0];
y=[0 0 1 1]; %定义四个点 [0 0] [1 0] [1 1] [0 1]
H_F=fill(x,y,[0 0.1 0.2 0.6]); %定义四个点的C值

row_cmap = 15; %定义色图矩阵的行数
color_map1=zeros(row_cmap,3); %定义色图矩阵
color_r = 0:1/(row_cmap-1):1;
color_g = 0:1/(row_cmap-1):1;
color_b = 0:1/(row_cmap-1):1;
color_map1(:,1) = color_r;
color_map1(:,2) = color_g;
colormap(color_map1);
colorbar;

%本例中颜色从[0 0 0] 变化到[1 1 0]

%增加row_cmap的值,如变化到100,则可看到颜色的渐变,而非跳跃型变化。

运行结果如下:

773679a9a96ce61ddd786cbbb0fe5914.png

问题:在以上两幅图中,只规定了四个点所对应的颜色,那么其他点(区域)的颜色显示是如何实现的?

转载自:

colormap_了凡春秋_新浪博客​blog.sina.com.cn matlab 的 colormap 函数详解​blog.sina.com.cn
### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值