Python是进行数据分析的一种出色语言,主要是因为以数据为中心的python软件包具有奇妙的生态系统。 Pandas是其中的一种,使导入和分析数据更加容易。
Pandas TimedeltaIndex.astype()函数使用将值强制转换为dtypes创建索引。新索引的类由dtype确定。如果无法进行转换,则会引发ValueError异常。
用法: TimedeltaIndex.astype(dtype, copy=True)
参数:
dtype:numpy dtype或pandas类型
copy:布尔值,默认为True
默认情况下,astype始终返回新分配的对象。如果copy设置为False并且满足dtype的内部要求,则使用原始数据创建新的Index或返回原始的Index。
返回:索引对象
范例1:采用TimedeltaIndex.astype()函数将TimedeltaIndex对象的值转换为“ str”。
# importing pandas as pd
import pandas as pd
# Create the first TimedeltaIndex object
tidx = pd.TimedeltaIndex(start = '1 days 02:00:12.001124',
periods = 5, freq = 'N', name = 'Koala')
# Print the TimedeltaIndex object
print(tidx)
输出:
现在我们将使用TimedeltaIndex.astype()函数将值转换为字符串。
# cast the data values to string format.
tidx.astype('str')
输出:
正如我们在输出中看到的,TimedeltaIndex.astype()函数已将tidx对象的值转换为所需的格式。
范例2:采用TimedeltaIndex.astype()函数将TimedeltaIndex对象的值转换为“ bool”。
# importing pandas as pd
import pandas as pd
# Create the TimedeltaIndex object
tidx = pd.TimedeltaIndex(data = ['06:05:01.000030', '+23:59:59.999999',
'22 day 2 min 3us 10ns'])
# Print the TimedeltaIndex object
print(tidx)
输出:
现在我们将使用TimedeltaIndex.astype()函数将值转换为布尔类型。
# cast the data values to bool type.
tidx.astype('bool')
输出:
正如我们在输出中看到的,TimedeltaIndex.astype()函数已将tidx对象的值转换为所需的格式。