先下载github代码,下面的操作,都是基于这个版本来的!
注意:由于涉及到版权问题,此附件没有图片和音乐。请参考链接,手动采集一下!
请参考链接:
一、玩具与玩具之间的对话
app消息提醒
之前实现了App发送语音消息给web端玩具,web端有消息提醒。现在app端,也需要消息提醒!
那么在后端,需要判断。这个消息是人还是玩具发送的消息。加一个user_type
玩具表增加user_type
修改玩具表toys。这里的小鱼,表示用户!
增加user_type
toys表的其他记录,也需要一并修改
务必保证 friend_list里面的每一条记录。都有user_type字段!
务必保证,每一个玩具都有2个好友。一个是主人,一个是除自己之外的玩具。
用户表增加user_type
修改用户表
修改第一个好友,增加user_type字段,toy表示玩具
修改另外一条记录
完整数据如下:
{"_id" : ObjectId("5b9bb768e1253281608e96eb"),"username" : "xiao","password" : "202cb962ac59075b964b07152d234b70","age" : "20","nickname" : "xiao","gender" : "1","phone" : "1234567","avatar" : "boy.jpg","bind_toy": ["5ba0f1f2e12532418089bf88","5ba21c84e1253229c4acbd12"],"friend_list": [
{"friend_id" : "5ba0f1f2e12532418089bf88","friend_name" : "小可爱","friend_remark" : "小甜甜","friend_avatar" : "girl.jpg","friend_chat" : "5ba0f1f2e12532418089bf87","user_type" : "toy"},
{"friend_id" : "5ba21c84e1253229c4acbd12","friend_name" : "嘻嘻","friend_remark" : "小豆芽","friend_avatar" : "girl.jpg","friend_chat" : "5ba21c84e1253229c4acbd11","user_type" : "toy"}
]
}
View Code
务必保证 friend_list里面的每一条记录。都有user_type字段!
后台逻辑修改
进入flask项目,修改 serv--> friend.py,增加user_type
from flask importBlueprint, request, jsonifyfrom setting importMONGO_DBfrom setting importRETfrom bson importObjectId
fri= Blueprint("fri", __name__)
@fri.route("/friend_list", methods=["POST"])def friend_list(): #好友列表
user_id = request.form.get("user_id")#查询用户id信息
res = MONGO_DB.users.find_one({"_id": ObjectId(user_id)})
friend_list= res.get("friend_list") #获取好友列表
RET["code"] =0
RET["msg"] = ""RET["data"] =friend_listreturnjsonify(RET)
@fri.route("/add_req", methods=["POST"])def add_req(): #添加好友请求
user_id = request.form.get("user_id") #有可能是 toy_id or user_id
friend_id = request.form.get("friend_id") #100%是toy_id
req_type = request.form.get("req_type")
req_msg= request.form.get("req_msg") #描述
remark = request.form.get("remark") #备注
if req_type == "toy":
user_info= MONGO_DB.toys.find_one({"_id": ObjectId(user_id)})else:
user_info= MONGO_DB.users.find_one({"_id": ObjectId(user_id)})
req_str={"req_user": str(user_info.get("_id")),"req_type": req_type,"req_toy": friend_id,"req_msg": req_msg,"avatar": user_info.get("avatar"),"user_remark": remark,#昵称,玩具是没有的
"user_nick": user_info.get("nickname") if user_info.get("nickname") else user_info.get("baby_name"),#状态,1通过,2拒绝,0中间状态(可切换到1和2)。
"status": 0
}
MONGO_DB.req.insert_one(req_str)
RET["code"] =0
RET["msg"] = "请求发送成功"RET["data"] ={}returnjsonify(RET)
@fri.route("/req_list", methods=["POST"])def req_list(): #添加请求列表
user_id = request.form.get("user_id")
user_info= MONGO_DB.users.find_one({"_id": ObjectId(user_id)})
bind_toy= user_info.get("bind_toy")
reqs= list(MONGO_DB.req.find({"req_toy": {"$in": bind_toy}, "status": 0}))for index, req inenumerate(reqs):
reqs[index]["_id"] = str(req.get("_id"))
RET["code"] =0
RET["msg"] = ""RET["data"] =reqsreturnjsonify(RET)
@fri.route("/get_req", methods=["POST"])def get_req(): #获取一个好友请求
req_id = request.form.get("req_id")
req_info= MONGO_DB.req.find_one({"_id": ObjectId(req_id)})
req_info["_id"] = str(req_info.get("_id"))
RET["code"] =0
RET["msg"] = ""RET["data"] =req_inforeturnjsonify(RET)
@fri.route("/acc_req", methods=["POST"])def acc_req(): #允许一个好友请求
req_id = request.form.get("req_id")
remark= request.form.get("remark")
req_info= MONGO_DB.req.find_one({"_id": ObjectId(req_id)})#1. 为 user 或 toy 添加 toy
if req_info.get("req_type") == "toy":
user_info= MONGO_DB.toys.find_one({"_id": ObjectId(req_info.get("req_user"))})
user_type= "toy"
else:
user_info= MONGO_DB.users.find_one({"_id": ObjectId(req_info.get("req_user"))})
user_type= "user"toy= MONGO_DB.toys.find_one({"_id": ObjectId(req_info.get("req_toy"))})
chat_window= MONGO_DB.chat.insert_one({"user_list": [str(toy.get("_id")), str(user_info.get("_id"))]})
friend_info={"friend_id": str(toy.get("_id")),"friend_name": toy.get("baby_name"),"friend_remark": req_info.get("user_remark"),"friend_avatar": toy.get("avatar"),"friend_chat": str(chat_window.inserted_id),"user_type": "toy"}if req_info.get("req_type") == "toy":
MONGO_DB.toys.update_one({"_id": ObjectId(req_info.get("req_user"))},
{"$push": {"friend_list": friend_info}})else:
MONGO_DB.users.update_one({"_id": ObjectId(req_info.get("req_user"))},
{"$push": {"friend_list": friend_info}})#2. 为 toy 添加 user 或 toy
user_name = user_info.get("nickname") if user_info.get("nickname") else user_info.get("baby_name")
friend_info2={"friend_id": str(user_info.get("_id")),"friend_name": user_name,#同意方的备注
"friend_remark": remark if remark elseuser_name,"friend_avatar": user_info.get("avatar"),"friend_chat": str(chat_window.inserted_id),"user_type":user_type #用户类型
}
MONGO_DB.toys.update_one({"_id": ObjectId(req_info.get("req_toy"))},
{"$push": {"friend_list": friend_info2}})
RET["code"] =0
RET["msg"] = f"添加好友{remark}成功"RET["data"] ={}
MONGO_DB.req.update_one({"_id": ObjectId(req_id)}, {"$set": {"status": 1}})returnjsonify(RET)
@fri.route("/ref_req", methods=["POST"])def ref_req(): #拒绝一个好友请求
req_id = request.form.get("req_id")
MONGO_DB.req.update_one({"_id": ObjectId(req_id)}, {"$set": {"status": 2}})
RET["code"] =0
RET["msg"] = "已拒绝好友请求"RET["data"] ={}return jsonify(RET)
View Code
修改 serv--> devices.py,增加user_type
from flask importBlueprint, request, jsonifyfrom setting importMONGO_DBfrom setting importRETfrom bson importObjectId
devs= Blueprint("devs", __name__)
@devs.route("/yanzheng_qr", methods=["POST"])def yanzheng_qr(): #验证二维码
device_id = request.form.get("device_id") #获取设备id
print(device_id)if MONGO_DB.devices.find_one({"device_id": device_id}): #从数据库中查询设备id
#查询该玩具是不是已被用户绑定
toy_info = MONGO_DB.toys.find_one({"device_id": device_id})#未绑定开启绑定逻辑
if nottoy_info:
RET["code"] =0
RET["msg"] = "感谢购买本公司产品"RET["data"] ={}#如果被绑定加好友逻辑开启
iftoy_info:
RET["code"] = 1RET["msg"] = "添加好友"RET["data"] = {"toy_id": str(toy_info.get("_id"))}else:
RET["code"] = 2RET["msg"] = "二货,这不是本公司设备,快去买正版!"RET["data"] ={}returnjsonify(RET)
@devs.route("/bind_toy", methods=["POST"])def bind_toy(): #绑定玩具
chat_window = MONGO_DB.chat.insert_one({}) #插入一个空数据
chat_id = chat_window.inserted_id #获取聊天id
user_id= request.form.get("user_id") #用户id
res = MONGO_DB.users.find_one({"_id": ObjectId(user_id)}) #查询用户id是否存在
device_id= request.form.get("device_id") #设备id
toy_name = request.form.get("toy_name") #玩具的昵称
baby_name = request.form.get("baby_name") #小主人的名字
remark = request.form.get("remark") #玩具主人对您的称呼
gender = request.form.get("gender") #性别
toy_info={"device_id": device_id,"toy_name": toy_name,"baby_name": baby_name,"gender": gender,"avatar": "boy.jpg" if gender == 1 else "girl.jpg",#绑定用户
"bind_user": str(res.get("_id")),#第一个好友
"friend_list": [{"friend_id": str(res.get("_id")), #好友id
"friend_name": res.get("nickname"), #好友昵称
"friend_remark": remark, #好友称呼
"friend_avatar": res.get("avatar"), #好友头像
"friend_chat": str(chat_id), #好友聊天id
"user_type":"user" #用户类型
}]
}
toy_res= MONGO_DB.toys.insert_one(toy_info) #插入玩具表数据
if res.get("friend_list"): #判断用户好友列表是否为空
#追加好友
res["bind_toy"].append(str(toy_res.inserted_id))
res["friend_list"].append({"friend_id": str(toy_res.inserted_id),"friend_name": toy_name,"friend_remark": baby_name,"friend_avatar": toy_info.get("avatar"),"friend_chat": str(chat_id),"user_type": "toy" #用户类型
})else:#更新好友
res["bind_toy"] =[str(toy_res.inserted_id)]
res["friend_list"] =[{"friend_id": str(toy_res.inserted_id),"friend_name": toy_name,"friend_remark": baby_name,"friend_avatar": toy_info.get("avatar"),"friend_chat": str(chat_id),"user_type": "toy" #用户类型
}]
MONGO_DB.users.update_one({"_id": ObjectId(user_id)}, {"$set": res}) #更新用户记录
#更新聊天表
#user_list有2个值。第一个是玩具id,第2个是用户id
#这样,用户和玩具就能通讯了
MONGO_DB.chat.update_one({"_id": chat_id},
{"$set":
{"user_list":
[str(toy_res.inserted_id),
str(res.get("_id"))]}})
RET["code"] =0
RET["msg"] = "绑定成功"RET["data"] ={}return jsonify(RET)
View Code
修改 utils-->baidu_ai.py,增加user_type
from aip importAipSpeechimportos
BASE_DIR= os.path.dirname(os.path.dirname(os.path.abspath(__file__))) #项目根目录
importsys
sys.path.append(BASE_DIR)#加入到系统环境变量中
import setting #导入setting
from uuid importuuid4#from setting import MONGO_DB#import setting
importosfrom bson importObjectId
client=AipSpeech(setting.APP_ID,setting.API_KEY,setting.SECRET_KEY)deftext2audio(text):
res= client.synthesis(text, "zh", 1, setting.SPEECH)
file_name= f"{uuid4()}.mp3"file_path=os.path.join(setting.CHAT_FILE, file_name)
with open(file_path,"wb") as f:
f.write(res)returnfile_namedefget_file_content(filePath):
os.system(f"ffmpeg -y -i {filePath} -acodec pcm_s16le -f s16le -ac 1 -ar 16000 {filePath}.pcm")
with open(f"{filePath}.pcm", 'rb') as fp:returnfp.read()defaudio2text(file_name):#识别本地文件
liu =get_file_content(file_name)
res= client.asr(liu, 'pcm', 16000, {'dev_pid': 1536,
})if res.get("result"):return res.get("result")[0]else:returnres#text2audio("你好")
defmy_nlp(q,toy_id):#1. 假设玩具说:q = 我要给爸爸发消息
print(q,"百度q")if "发消息" inq:
toy= setting.MONGO_DB.toys.find_one({"_id":ObjectId(toy_id)})#print(toy.get("friend_list"))
for i in toy.get("friend_list"):#print(i.get("friend_remark"),i.get("friend_name"),'iiiiiiiii')
if i.get("friend_remark") in q or i.get("friend_name") inq :
res= text2audio(f"可以按消息键,给{i.get('friend_remark')}发消息了")
send_str={"code": 0,"from_user": i.get("friend_id"),"msg_type": "chat","data": res,"user_type":i.get("user_type")
}returnsend_strif "我要听" in q or "我想听" in q or "唱一首" inq:
sources=setting.MONGO_DB.sources.find({})for i insources:if i.get("title") inq:
send_str={"code": 0,"from_user": toy_id,"msg_type": "music","data": i.get("audio")
}returnsend_str
res= text2audio("对不起,我没明白你的意思")
send_str={"code": 0,"from_user": toy_id,"msg_type": "chat","data": res
}return send_str
View Code
修改 im_serv.py,增加user_type
from flask importFlask, requestfrom geventwebsocket.websocket importWebSocketfrom geventwebsocket.handler importWebSocketHandlerfrom gevent.pywsgi importWSGIServerimportjson, osfrom uuid importuuid4from setting importAUDIO_FILE,CHAT_FILEfrom serv importcontentfrom utils importbaidu_aifrom utils importchat_redisimportsettingfrom bson importObjectIdimporttime
app= Flask(__name__)
user_socket_dict= {} #空字典,用来存放用户名和发送消息
@app.route("/toy/")def toy(tid): #玩具连接
#获取请求的WebSocket对象
user_socket = request.environ.get("wsgi.websocket") #type:WebSocket
ifuser_socket:#设置键值对
user_socket_dict[tid] =user_socketprint(user_socket_dict)#{'123456': }
file_name= ""to_user= ""
#循环,接收消息
whileTrue:
msg=user_socket.receive()if type(msg) ==bytearray:
file_name= f"{uuid4()}.wav"file_path=os.path.join(CHAT_FILE, file_name)
with open(file_path,"wb") as f:
f.write(msg)else:
msg_dict=json.loads(msg)
to_user= msg_dict.get("to_user")
msg_type= msg_dict.get("msg_type")
user_type= msg_dict.get("user_type")if to_user andfile_name:
other_user_socket=user_socket_dict.get(to_user)if msg_type == "ai":
q=baidu_ai.audio2text(file_path)print(q)
ret=baidu_ai.my_nlp(q, tid)
other_user_socket.send(json.dumps(ret))else:if user_type == "toy":
res= setting.MONGO_DB.toys.find_one({"_id": ObjectId(to_user)})
fri= [i.get("friend_remark") for i in res.get("friend_list") if i.get("friend_id") ==tid][0]
msg_file_name= baidu_ai.text2audio(f"你有来自{fri}的消息")
send_str={"code": 0,"from_user": tid,"msg_type": "chat","user_type": "toy","data": msg_file_name
}else:
send_str={"code": 0,"from_user": tid,"msg_type": "chat","data": file_name,
}if other_user_socket: #当websocket连接存在时
chat_redis.save_msg(tid, to_user) #保存消息到redis
#发送数据
other_user_socket.send(json.dumps(send_str))else:#离线消息
chat_redis.save_msg(tid, to_user)#保存聊天记录到MongoDB
_add_chat(tid, to_user, send_str.get("data"))
to_user= ""file_name= ""@app.route("/app/")def user_app(uid): #手机app连接
user_socket = request.environ.get("wsgi.websocket") #type:WebSocket
ifuser_socket:
user_socket_dict[uid]=user_socket#{ uid : websocket}
print(user_socket_dict)
file_name= ""to_user= ""
while True: #手机听歌 把歌曲发送给 玩具 1.将文件直接发送给玩具 2.将当前听的歌曲名称或ID发送到玩具
msg =user_socket.receive()if type(msg) == bytearray: #判断类型为bytearray
file_name = f"{uuid4()}.amr" #文件后缀为amr,安卓和ios通用
file_path = os.path.join(CHAT_FILE, file_name) #存放在chat目录
print(msg)
with open(file_path,"wb") as f:
f.write(msg)#写入文件
#将amr转换为mp3,因为html中的audio不支持amr
os.system(f"ffmpeg -i {file_path} {file_path}.mp3")else:
msg_dict=json.loads(msg)
to_user= msg_dict.get("to_user") #获取目标用户
if msg_dict.get("msg_type") == "music":
other_user_socket=user_socket_dict.get(to_user)
send_str={"code": 0,"from_user": uid,"msg_type": "music","data": msg_dict.get("data")
}
other_user_socket.send(json.dumps(send_str))#res = content._content_one(content_id)
if file_name and to_user: #如果文件名和发送用户同上存在时
#查询玩具信息
res = setting.MONGO_DB.toys.find_one({"_id": ObjectId(to_user)})#获取friend_remark
fri = [i.get("friend_remark") for i in res.get("friend_list") if i.get("friend_id") ==uid][0]
msg_file_name= baidu_ai.text2audio(f"你有来自{fri}的消息")#获取websocket对象
other_user_socket =user_socket_dict.get(to_user)#构造数据
send_str ={"code": 0,"from_user": uid,"msg_type": "chat", #聊天类型
#后缀必须是mp3的
"data": msg_file_name
}ifother_user_socket:
chat_redis.save_msg(uid, to_user)#发送数据给前端页面
other_user_socket.send(json.dumps(send_str))else:#保存redis
chat_redis.save_msg(uid, to_user)#添加聊天记录到数据库
_add_chat(uid, to_user, f"{file_name}.mp3")#最后一定要清空这2个变量,否则造成混乱
file_name = ""to_user= ""
def _add_chat(sender, to_user, msg): #添加聊天记录到数据库
chat_window = setting.MONGO_DB.chat.find_one({"user_list": {"$all": [sender, to_user]}})if not chat_window.get("chat_list"):
chat_window["chat_list"] =[{"sender": sender,"msg": msg,"updated_at": time.time(),
}]
res= setting.MONGO_DB.chat.update_one({"_id": ObjectId(chat_window.get("_id"))}, {"$set": chat_window})else:
chat={"sender": sender,"msg": msg,"updated_at": time.time(),
}
res= setting.MONGO_DB.chat.update_one({"_id": ObjectId(chat_window.get("_id"))}, {"$push": {"chat_list": chat}})returnresif __name__ == '__main__':#创建一个WebSocket服务器
http_serv = WSGIServer(("0.0.0.0", 9528), app, handler_class=WebSocketHandler)#开始监听HTTP请求
http_serv.serve_forever()'''{
"code": 0,
"from_user": uid, # APP用户id
"data": music_name # 歌曲名
}'''
View Code
修改 templates-->index.html,增加user_type
Title玩具开机键
开始废话
发送语音
录制消息
发送语音消息
收取消息
var ws_serv= "ws://127.0.0.1:9528";//获取音频文件
var get_music= serv + "/get_audio/";
var get_chat= serv + "/get_chat/";
var ws= null; //WebSocket 对象
var reco=null;//创建AudioContext对象
var audio_context=new AudioContext();
var toy_id=null;//要获取音频和视频
navigator.getUserMedia= (navigator.getUserMedia ||navigator.webkitGetUserMedia||navigator.mozGetUserMedia||navigator.msGetUserMedia);//拿到媒体对象,允许音频对象
navigator.getUserMedia({audio: true}, create_stream, function (err) {
console.log(err)
});//创建媒体流容器
function create_stream(user_media) {
var stream_input=audio_context.createMediaStreamSource(user_media);//给Recoder 创建一个空间,麦克风说的话,都可以录入。是一个流
reco=new Recorder(stream_input);
}
function start_reco() {//开始录音
reco.record();//往里面写流
}
function stop_reco() {//停止录音
reco.stop();//停止写入流
get_audio();//调用自定义方法
reco.clear();//清空容器
}
{#function get_audio() { // 获取音频#}
{#reco.exportWAV(function (wav_file) {#}
{#ws.send(wav_file); //使用websocket连接发送数据给后端#}
{#})#}
{#}#}
function send_reco() {
reco.stop();
send_audio();
reco.clear();
}
function send_audio() {
var to_user= document.getElementById("to_user").innerText;
var user_type= document.getElementById("user_type").innerText;
var send_str={"to_user": to_user,"user_type":user_type
};
ws.send(JSON.stringify(send_str));
reco.exportWAV(function (wav_file) {
ws.send(wav_file);
})
}
function get_audio() {
var send_str={"to_user": toy_id,"msg_type": "ai"};
ws.send(JSON.stringify(send_str));
reco.exportWAV(function (wav_file) {
ws.send(wav_file);
})
}
function start_toy() {//玩具开机//获取输入的设备id
var device_id= document.getElementById("device_id").value;//发送post请求
$.post(// 这里的地址必须是127.0.0.1,否则会有跨域问题"http://127.0.0.1:9527/device_toy_id",//发送设备id
{device_id: device_id},
function (data) {
console.log(data);
toy_id= data.data.toy_id; //玩具id//修改audio标签的src属性
document.getElementById("player").src = get_music +data.data.audio;if (toy_id) { //判断玩具id存在时
ws= new WebSocket(ws_serv + "/toy/" +toy_id);
ws.onmessage=function (data) {// console.log(get_music +data.data);
var content= JSON.parse(data.data); //反序列化数据
{#console.log(content);#}
//判断消息类型if (content.msg_type == "chat") {
document.getElementById("player").src = get_chat +content.data;
document.getElementById("to_user").innerText =content.from_user;
document.getElementById("user_type").innerText =content.user_type;
console.log(content.from_user+ "给你发送了一条消息");
}if (content.msg_type == "music") {
document.getElementById("player").src = get_music +content.data;
console.log(content.from_user+ "给你点播了歌儿");
}
};
ws.onclose=function () {
window.location.reload();
}
}
},"json"
//规定预期的服务器响应的数据类型为json
);
}
function recv_msg() {
var to_user= document.getElementById("to_user").innerText;
var player= document.getElementById("player");
to_user= document.getElementById("to_user").innerText;
$.post(
serv+ "/get_msg",
{user_id: toy_id, sender: to_user},
function (data) {//shift() 方法用于把数组的第一个元素从其中删除,并返回第一个元素的值
var msg=data.data.shift();
document.getElementById("to_user").innerText =msg.sender;
player.src= get_chat + msg.msg; //修改audio标签src属性// onended 事件在视频/音频(audio/video)播放结束时触发
player.οnended=function () {//如果长度大于0,也就是有1条或者多条时if(data.data.length >0){//修改audio标签src属性,有多条时,会轮询触发
player.src= get_chat +data.data.shift().msg;
}else{returnnull;
}
}
},"json")
}
View Code
重启manager.py和im_serv.py
重新访问网页,让2个玩具开机。左边是小甜甜,右边是小豆芽
为了保证给对方发消息的时候,不造成混乱!
修改 玩具表toys,将toy_name和baby_name改成一样的。
完整数据如下:
/* 1 createdAt:2018/9/19 下午5:53:08*/{"_id" : ObjectId("5ba21c84e1253229c4acbd12"),"device_id" : "02cc0fc7490b6ee08c31f38ac7a375eb","toy_name" : "小豆芽","baby_name" : "小豆芽","gender" : "2","avatar" : "girl.jpg","bind_user" : "5b9bb768e1253281608e96eb","friend_list": [
{"friend_id" : "5b9bb768e1253281608e96eb","friend_name" : "xiao","friend_remark" : "小鱼","friend_avatar" : "boy.jpg","friend_chat" : "5ba21c84e1253229c4acbd11","user_type" : "user"},
{"friend_id" : "5ba0f1f2e12532418089bf88","friend_name" : "小甜甜","friend_remark" : "小甜甜","friend_avatar" : "girl.jpg","friend_chat" : "5bab7c19e125327ffc804459","user_type" : "toy"}
]
},/* 2 createdAt:2018/9/18 下午8:39:14*/{"_id" : ObjectId("5ba0f1f2e12532418089bf88"),"device_id" : "01f9bf1bac93eddd8397d0455abbeddb","toy_name" : "小甜甜","baby_name" : "小甜甜","gender" : "2","avatar" : "girl.jpg","bind_user" : "5b9bb768e1253281608e96eb","friend_list": [
{"friend_id" : "5b9bb768e1253281608e96eb","friend_name" : "xiao","friend_remark" : "小鱼","friend_avatar" : "boy.jpg","friend_chat" : "5ba21c84e1253229c4acbd11","user_type" : "user"},
{"friend_id" : "5ba21c84e1253229c4acbd12","friend_name" : "小豆芽","friend_remark" : "小豆芽","friend_avatar" : "girl.jpg","friend_chat" : "5bab7c19e125327ffc804459","user_type" : "toy"}
]
}
View Code
修改 用户表users,也是将toy_name和baby_name改成一样的
{"_id" : ObjectId("5b9bb768e1253281608e96eb"),"username" : "xiao","password" : "202cb962ac59075b964b07152d234b70","age" : "20","nickname" : "xiao","gender" : "1","phone" : "1234567","avatar" : "boy.jpg","bind_toy": ["5ba0f1f2e12532418089bf88","5ba21c84e1253229c4acbd12"],"friend_list": [
{"friend_id" : "5ba0f1f2e12532418089bf88","friend_name" : "小甜甜","friend_remark" : "小甜甜","friend_avatar" : "girl.jpg","friend_chat" : "5ba0f1f2e12532418089bf87","user_type" : "toy"},
{"friend_id" : "5ba21c84e1253229c4acbd12","friend_name" : "小豆芽","friend_remark" : "小豆芽","friend_avatar" : "girl.jpg","friend_chat" : "5ba21c84e1253229c4acbd11","user_type" : "toy"}
]
}
View Code
修改 chat表,请确保 主人-->小甜甜-->小豆芽。这3者之间必须要有3条记录!
分别是:
主人--> 小甜甜
主人--> 小豆芽
小甜甜--> 小豆芽
这样,就可以实现3者之间的聊天通信了!
chat完整记录如下:
/* 1 createdAt:2018/9/25 下午9:05:46*/{"_id" : ObjectId("5baa32aae125320598c912f3"),"user_list": ["5ba0f1f2e12532418089bf88","5ba21c84e1253229c4acbd12"]
},/* 2 createdAt:2018/9/19 下午5:53:08*/{"_id" : ObjectId("5ba21c84e1253229c4acbd11"),"user_list": ["5b9bb768e1253281608e96eb","5ba21c84e1253229c4acbd12"]
},/* 3 createdAt:2018/9/18 下午8:39:14*/{"_id" : ObjectId("5ba0f1f2e12532418089bf87"),"user_list": ["5b9bb768e1253281608e96eb","5ba0f1f2e12532418089bf88"]
}
View Code
进入左边网页,点击 开始废话,说: 发消息给 小豆芽 。再点击发送语音!
网页会说:可以按消息键,给 小豆芽 发消息了!
这里会出现 toy,表示给玩具发消息。左边的id,就是 小豆芽的id
点击 录制消息,说:你好, 我是小甜甜!
点击 发送语音消息
这个时候,网页会有提示: 你有来自 小甜甜 的消息
切换到第二个网页,会出现设备id,这个是 小甜甜的。
点击 收取消息
会播放: 你好, 我是小甜甜!
这样,就实现了,玩具之间的通信了!
二、基于jieba gensim pypinyin实现的自然语言处理
jieba
jieba分词,完全开源,有集成的python库,简单易用。
jieba分词是基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG),动态规划查找最大概率路径, 找出基于词频的最大切分组合
安装
pip install gensim
由于包很大,如果安装比较慢,可以使用国内更新源安装
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jieba
使用
我们通常把这个库叫做 结巴分词 确实是结巴分词,而且这个词库是 made in china , 基本用一下这个结巴分词:
importjieba
key_word= "我的妈妈真伟大" #定义一句话,基于这句话进行分词
cut_word= jieba.cut(key_word) #使用结巴分词中的cut方法对"我的妈妈真伟大" 进行分词
print(cut_word) # 不懂生成器的话,就忽略这里
cut_word_list= list(cut_word) #如果不明白生成器的话,这里要记得把生成器对象做成列表
print(cut_word_list) #['我', '的', '妈妈', '真', '伟大']
测试代码就很明显了,它很清晰的把咱们的中文字符串转为列表存储起来了
如果需要将 "真伟大" 变成一个词,需要添加词库,使用add_word
importjieba
key_word= "我的妈妈真伟大" #定义一句话,基于这句话进行分词
jieba.add_word("真伟大") #添加词库
cut_word = jieba.cut(key_word) #使用结巴分词中的cut方法对"我的妈妈真伟大" 进行分词
cut_word_list= list(cut_word) #如果不明白生成器的话,这里要记得把生成器对象做成列表
print(cut_word_list) #['我', '的', '妈妈', '真伟大']
pypinyin
将汉字转为拼音。可以用于汉字注音、排序、检索(Russian translation) 。
特性
根据词组智能匹配最正确的拼音。
支持多音字。
简单的繁体支持, 注音支持。
支持多种不同拼音/注音风格。
安装
pip install pypinyin
使用
from pypinyin importlazy_pinyin,TONE2
key_word= "我的妈妈真伟大" #定义一句话
res = lazy_pinyin(key_word,style=TONE2) #设置拼音风格
print(res) #['wo3', 'de', 'ma1', 'ma1', 'zhe1n', 'we3i', 'da4']
拼音声调是指普通话中的声调,通常叫四声,即阴平(第一声),用“ˉ”表示,如lā;阳平第二声,用“ˊ”表示,如lá;上声(第三声),用“ˇ”表示,如lǎ;去声(第四声),用“ˋ”表示,如;là。
wo3 最后面的3表示声调。它是第三声!
看下面的例子,这些字也是同音
from pypinyin importlazy_pinyin,TONE2
key_word= "贝贝蓓蓓背背" #定义一句话
res = lazy_pinyin(key_word,style=TONE2) #设置拼音风格
print(res) #['be4i', 'be4i', 'be4i', 'be4i', 'be4i', 'be4i']
gensim
Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达。
它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法,
支持流式训练,并提供了诸如相似度计算,信息检索等一些常用任务的API接口
基本概念
语料(Corpus):一组原始文本的集合,用于无监督地训练文本主题的隐层结构。语料中不需要人工标注的附加信息。在Gensim中,Corpus通常是一个可迭代的对象(比如列表)。每一次迭代返回一个可用于表达文本对象的稀疏向量。
向量(Vector):由一组文本特征构成的列表。是一段文本在Gensim中的内部表达。
稀疏向量(SparseVector):通常,我们可以略去向量中多余的0元素。此时,向量中的每一个元素是一个(key, value)的元组
模型(Model):是一个抽象的术语。定义了两个向量空间的变换(即从文本的一种向量表达变换为另一种向量表达)。
安装
pip install jieba
使用
这个训练库很厉害, 里面封装很多机器学习的算法, 是目前人工智能的主流应用库,这个不是很好理解, 需要一定的Python数据处理的功底
importjiebaimportgensimfrom gensim importcorporafrom gensim importmodelsfrom gensim importsimilarities
l1= ["你的名字是什么", "你今年几岁了", "你有多高你心情怎么样", "你心情怎么样"]
a= "你今年多大了"
#制作语料库
all_doc_list =[]for doc inl1:
doc_list= [word for word injieba.cut(doc)]
all_doc_list.append(doc_list)print(all_doc_list)#[['你', '的', '名字', '是', '什么'],#1 4 2 3 0#['你', '今年', '几岁', '了'],#1 6 7 5
#将问题分词
doc_test_list = [word for word injieba.cut(a)]#['你', '今年', '多大', '了']#1 6 5
#制作词袋
dictionary =corpora.Dictionary(all_doc_list)#词袋的理解#词袋就是将很多很多的词,进行排列形成一个 词(key) 与一个 标志位(value) 的字典#例如: {'什么': 0, '你': 1, '名字': 2, '是': 3, '的': 4, '了': 5, '今年': 6, '几岁': 7, '多': 8, '心情': 9, '怎么样': 10, '有': 11, '高': 12}#至于它是做什么用的,带着问题往下看
print("token2id", dictionary.token2id)print("dictionary", dictionary, type(dictionary))
corpus= [dictionary.doc2bow(doc) for doc inall_doc_list]#语料库:#这里是将all_doc_list 中的每一个列表中的词语 与 dictionary 中的Key进行匹配#得到一个匹配后的结果,例如['你', '今年', '几岁', '了']#就可以得到 [(1, 1), (6, 1), (7, 1), (5, 1)]#1代表的的是 你 1代表出现一次, 5代表的是 了 1代表出现了一次, 以此类推 6 = 今年 , 7 = 几岁
print("corpus", corpus, type(corpus))#将需要寻找相似度的分词列表 做成 语料库 doc_test_vec
doc_test_vec =dictionary.doc2bow(doc_test_list)print("doc_test_vec", doc_test_vec, type(doc_test_vec))#将corpus语料库(初识语料库) 使用Lsi模型进行训练
lsi =models.LsiModel(corpus)#这里的只是需要学习Lsi模型来了解的,这里不做阐述
print("lsi", lsi, type(lsi))#语料库corpus的训练结果
print("lsi[corpus]", lsi[corpus])#获得语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示
print("lsi[doc_test_vec]", lsi[doc_test_vec])#文本相似度#稀疏矩阵相似度 将 主 语料库corpus的训练结果 作为初始值
index = similarities.SparseMatrixSimilarity(lsi[corpus], num_features=len(dictionary.keys()))print("index", index, type(index))#将 语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示 与 语料库corpus的 向量表示 做矩阵相似度计算
sim =index[lsi[doc_test_vec]]print("sim", sim, type(sim))#对下标和相似度结果进行一个排序,拿出相似度最高的结果#cc = sorted(enumerate(sim), key=lambda item: item[1],reverse=True)
cc = sorted(enumerate(sim), key=lambda item: -item[1])print(cc)
text=l1[cc[0][0]]print(a,text)
View Code
执行输出:
[['你', '的', '名字', '是', '什么'], ['你', '今年', '几岁', '了'], ['你', '有', '多', '高', '你', '心情', '怎么样'], ['你', '心情', '怎么样']]
token2id {'什么': 0, '你': 1, '名字': 2, '是': 3, '的': 4, '了': 5, '今年': 6, '几岁': 7, '多': 8, '心情': 9, '怎么样': 10, '有': 11, '高': 12}
dictionary Dictionary(13 unique tokens: ['什么', '你', '名字', '是', '的']...) corpus [[(0,1), (1, 1), (2, 1), (3, 1), (4, 1)], [(1, 1), (5, 1), (6, 1), (7, 1)], [(1, 2), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1)], [(1, 1), (9, 1), (10, 1)]] doc_test_vec [(1, 1), (5, 1), (6, 1)] lsi LsiModel(num_terms=13, num_topics=200, decay=1.0, chunksize=20000) lsi[corpus]lsi[doc_test_vec] [(0,0.900230201263672), (1, 0.3426436202483724), (2, -1.1659919622685817)]
indexsim [0.2956978 0.99180055 0.44080025 0.38174424] [(1, 0.99180055), (2, 0.44080025), (3, 0.38174424), (0, 0.2956978)]
你今年多大了 你今年几岁了
View Code
噼里啪啦写了这一堆代码,到底干了啥哟?看了一脸懵逼!
大概意思就是。我抛出了一个问题,就是变量a
你今年多大了
在问题库里面,有这些问题
["你的名字是什么", "你今年几岁了", "你有多高你心情怎么样", "你心情怎么样"]
经过 矩阵相似度计算之后,得到一个最优的结果
你今年几岁了
也就是说,我问:你今年多大了,机器认为我的问题是:你今天几岁了
这2句话,其实是一个意思!
集成到flask
进入flask项目,进入utils目录,新建文件lowB_plus.py
importjiebaimportsettingfrom gensim importcorporafrom gensim importmodelsfrom gensim importsimilarities
l1=[]for i insetting.MONGO_DB.sources.find({}):
l1.append(i.get("title"))defmy_nlp(text):#制作语料库
all_doc_list =[]for doc inl1:
doc_list= [word for word injieba.cut(doc)]
all_doc_list.append(doc_list)print(all_doc_list)#[['你', '的', '名字', '是', '什么'],
#1 4 2 3 0
#['你', '今年', '几岁', '了'],
#1 6 7 5
#['你', '有', '多', '高', '你', '胸多大'],
#1 9 8 11 1 10
#['你', '胸多大']]
#1 10
#将问题分词
doc_test_list = [word for word injieba.cut(text)]print(doc_test_list)#['你', '今年', '多大', '了']
#1 6 5
#制作词袋
dictionary =corpora.Dictionary(all_doc_list)#词袋的理解
#词袋就是将很多很多的词,进行排列形成一个 词(key) 与一个 标志位(value) 的字典
#例如: {'什么': 0, '你': 1, '名字': 2, '是': 3, '的': 4, '了': 5, '今年': 6, '几岁': 7, '多': 8, '有': 9, '胸多大': 10, '高': 11}
#至于它是做什么用的,带着问题往下看
print("token2id", dictionary.token2id)print("dictionary", dictionary, type(dictionary))
corpus= [dictionary.doc2bow(doc) for doc inall_doc_list]#语料库:
#这里是将all_doc_list 中的每一个列表中的词语 与 dictionary 中的Key进行匹配
#得到一个匹配后的结果,例如['你', '今年', '几岁', '了']
#就可以得到 [(1, 1), (5, 1), (6, 1), (7, 1)]
#1代表的的是 你 1代表出现一次, 5代表的是 了 1代表出现了一次, 以此类推 6 = 今年 , 7 = 几岁
print("corpus", corpus, type(corpus))#将需要寻找相似度的分词列表 做成 语料库 doc_test_vec
doc_test_vec =dictionary.doc2bow(doc_test_list)print("doc_test_vec", doc_test_vec, type(doc_test_vec))#[(1, 1), (5, 1), (6, 1)]
#将corpus语料库(初识语料库) 使用Lsi模型进行训练
lsi =models.LsiModel(corpus)#这里的只是需要学习Lsi模型来了解的,这里不做阐述
print("lsi", lsi, type(lsi))#语料库corpus的训练结果
print("lsi[corpus]", lsi[corpus])#获得语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示
print("lsi[doc_test_vec]", lsi[doc_test_vec])#文本相似度
#稀疏矩阵相似度 将 主 语料库corpus的训练结果 作为初始值
index = similarities.SparseMatrixSimilarity(lsi[corpus], num_features=len(dictionary.keys()))print("index", index, type(index))#向量表示:
#(0.387654321,0.84382974,0.4297589245,1.2439785,3.9867462154)
#((0.387654321,0.84382974,0.4297589245,1.2439786,3.9867462154),(0.387654321,0.84382974,0.4297589245,1.2439786,3.9867462154),(0.387654321,0.84382974,0.4297589245,1.2439786,3.9867462154),(0.387654321,0.84382974,0.4297589245,1.2439786,3.9867462154))
#将 语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示 与 语料库corpus的 向量表示 做矩阵相似度计算
sim =index[lsi[doc_test_vec]]print("sim", sim, type(sim))#对下标和相似度结果进行一个排序,拿出相似度最高的结果
#cc = sorted(enumerate(sim), key=lambda item: item[1],reverse=True)
cc = sorted(enumerate(sim), key=lambda item: -item[1])print(cc)
text=l1[cc[0][0]]return text
View Code
由于还不够智能,所以叫 lowB_plus
修改 utils-->baidu_ai.py,使用 lowB_plus
from aip importAipSpeechimportos
BASE_DIR= os.path.dirname(os.path.dirname(os.path.abspath(__file__))) #项目根目录
importsys
sys.path.append(BASE_DIR)#加入到系统环境变量中
import setting #导入setting
from uuid importuuid4#from setting import MONGO_DB#import setting
importosfrom bson importObjectIdfrom utils importlowB_plusfrom pypinyin importlazy_pinyin, TONE2
client=AipSpeech(setting.APP_ID,setting.API_KEY,setting.SECRET_KEY)deftext2audio(text):
res= client.synthesis(text, "zh", 1, setting.SPEECH)
file_name= f"{uuid4()}.mp3"file_path=os.path.join(setting.CHAT_FILE, file_name)
with open(file_path,"wb") as f:
f.write(res)returnfile_namedefget_file_content(filePath):
os.system(f"ffmpeg -y -i {filePath} -acodec pcm_s16le -f s16le -ac 1 -ar 16000 {filePath}.pcm")
with open(f"{filePath}.pcm", 'rb') as fp:returnfp.read()defaudio2text(file_name):#识别本地文件
liu =get_file_content(file_name)
res= client.asr(liu, 'pcm', 16000, {'dev_pid': 1536,
})if res.get("result"):return res.get("result")[0]else:returnres#text2audio("你好")
defmy_nlp(q,toy_id):#1. 假设玩具说:q = 我要给爸爸发消息
if "发消息" inq:
q= "".join(lazy_pinyin(q, style=TONE2))print(q)
toy= setting.MONGO_DB.toys.find_one({"_id": ObjectId(toy_id)})#print(toy.get("friend_list"))
for i in toy.get("friend_list"):#转换成拼音,即使同音字也能匹配
remark_pinyin = "".join(lazy_pinyin(i.get("friend_remark"), style=TONE2))
name_pinyin= "".join(lazy_pinyin(i.get("friend_name"), style=TONE2))print(name_pinyin)if remark_pinyin in q or name_pinyin inq:
res= text2audio(f"可以按消息键,给{i.get('friend_remark')}发消息了")
send_str={"code": 0,"from_user": i.get("friend_id"),"msg_type": "chat","data": res,"user_type":i.get("user_type")
}returnsend_strif "我要听" in q or "我想听" in q or "唱一首" inq:
q= str(q).replace("我要听", "")
q= str(q).replace("我想听", "")
q= str(q).replace("唱一首", "")print(q)
title=lowB_plus.my_nlp(q)
sources= setting.MONGO_DB.sources.find_one({"title": title})for i insources:if i.get("title") inq:
send_str={"code": 0,"from_user": toy_id,"msg_type": "music","data": i.get("audio")
}returnsend_str
res= text2audio("对不起,我没明白你的意思")
send_str={"code": 0,"from_user": toy_id,"msg_type": "chat","data": res
}return send_str
View Code
测试
重启 manager.py和im_serv.py
重新访问网页,让2个玩具开机。左边是小甜甜,右边是小豆芽
使用 小甜甜给小豆芽发送消息。注意:说话的时候,可以使用儿化音。
比如:发消息 给 小豆芽儿
查看Pycharm控制台输出:
发消息给小豆芽儿
fa1xia1oxi1ge3ixia3odo4uya2e2r
第二个网页,小豆芽,也可以接收消息!
测试同音字
打开玩具表toys,找到 小甜甜的记录,将小豆芽,改成晓逗牙
再次测试发送语音给 小豆芽
小豆芽,一样也可以收到消息!
注意:尽可能避免多音字。否则会无法匹配到!
接入图灵
如果说别的话,比如:今天天气怎么样?网页会提示: 对不起,我没明白你的意思
这样用户体验不好,那么这种匹配不到的问题,扔给图灵来处理就可以了!
修改 setting.py,增加图灵配置
importpymongoimportosimportredis#数据库配置
client = pymongo.MongoClient(host="127.0.0.1", port=27017)
MONGO_DB= client["bananabase"]
REDIS_DB= redis.Redis(host="127.0.0.1",port=6379)
RET={#0: false 2: True
"code": 0,"msg": "", #提示信息
"data": {}
}
XMLY_URL= "http://m.ximalaya.com/tracks/" #喜马拉雅链接
CREATE_QR_URL = "http://qr.liantu.com/api.php?text=" #生成二维码API
#文件目录
AUDIO_FILE= os.path.join(os.path.dirname(__file__), "audio") #音频
AUDIO_IMG_FILE = os.path.join(os.path.dirname(__file__), "audio_img") #音频图片
DEVICE_CODE_PATH= os.path.join(os.path.dirname(__file__), "device_code") #二维码
CHAT_FILE = os.path.join(os.path.dirname(__file__), "chat") #聊天
#百度AI配置
APP_ID = '11793552'API_KEY= 'uA6sToQWcvYt2lT6qTW6WFrG'SECRET_KEY= '5rZ1XGYMV39LQBVT4Y1yLNCsmueVe8RQ'SPEECH={"spd": 4,'vol': 5,"pit": 8,"per": 4}#图灵配置:
TL_URL = "http://openapi.tuling123.com/openapi/api/v2"TL_DATA={#请求的类型 0 文本 1 图片 2 音频
"reqType": 0,#// 输入信息(必要参数)
"perception": {#文本信息
"inputText": {#问题
"text": "北京未来七天,天气怎么样"}
},#用户必要信息
"userInfo": {#图灵机器人的apikey
"apiKey": "8fc493d348704ba4af5413e67e6fc90b",#用户唯一标识
"userId": "xiao"}
}
View Code
进入utils目录,新建文件 tuling.py
importrequestsimportjsonfrom setting importTL_URL as tuling_urlfrom setting importTL_DATA as datadefto_tuling(q,user_id):
data["perception"]["inputText"]["text"] =q
data["userInfo"]["userId"] =user_id
res= requests.post(tuling_url, json=data)
res_dic= json.loads(res.content.decode("utf8")) #type:dict
res_type = res_dic.get("results")[0].get("resultType")
result= res_dic.get("results")[0].get("values").get(res_type)print(result)return result
View Code
修改 utils-->baidu_ai.py,接入图灵
from aip importAipSpeechimportos
BASE_DIR= os.path.dirname(os.path.dirname(os.path.abspath(__file__))) #项目根目录
importsys
sys.path.append(BASE_DIR)#加入到系统环境变量中
import setting #导入setting
from uuid importuuid4#from setting import MONGO_DB#import setting
importosfrom bson importObjectIdfrom utils importlowB_plusfrom pypinyin importlazy_pinyin, TONE2from utils importtuling
client=AipSpeech(setting.APP_ID,setting.API_KEY,setting.SECRET_KEY)deftext2audio(text):
res= client.synthesis(text, "zh", 1, setting.SPEECH)
file_name= f"{uuid4()}.mp3"file_path=os.path.join(setting.CHAT_FILE, file_name)
with open(file_path,"wb") as f:
f.write(res)returnfile_namedefget_file_content(filePath):
os.system(f"ffmpeg -y -i {filePath} -acodec pcm_s16le -f s16le -ac 1 -ar 16000 {filePath}.pcm")
with open(f"{filePath}.pcm", 'rb') as fp:returnfp.read()defaudio2text(file_name):#识别本地文件
liu =get_file_content(file_name)
res= client.asr(liu, 'pcm', 16000, {'dev_pid': 1536,
})if res.get("result"):return res.get("result")[0]else:returnres#text2audio("你好")
defmy_nlp(q,toy_id):#1. 假设玩具说:q = 我要给爸爸发消息
if "发消息" inq:
q= "".join(lazy_pinyin(q, style=TONE2))print(q)
toy= setting.MONGO_DB.toys.find_one({"_id": ObjectId(toy_id)})#print(toy.get("friend_list"))
for i in toy.get("friend_list"):#转换成拼音,即使同音字也能匹配
remark_pinyin = "".join(lazy_pinyin(i.get("friend_remark"), style=TONE2))
name_pinyin= "".join(lazy_pinyin(i.get("friend_name"), style=TONE2))print(name_pinyin)if remark_pinyin in q or name_pinyin inq:
res= text2audio(f"可以按消息键,给{i.get('friend_remark')}发消息了")
send_str={"code": 0,"from_user": i.get("friend_id"),"msg_type": "chat","data": res,"user_type":i.get("user_type")
}returnsend_strif "我要听" in q or "我想听" in q or "唱一首" inq:
q= str(q).replace("我要听", "")
q= str(q).replace("我想听", "")
q= str(q).replace("唱一首", "")print(q)
title=lowB_plus.my_nlp(q)
sources= setting.MONGO_DB.sources.find_one({"title": title})for i insources:if i.get("title") inq:
send_str={"code": 0,"from_user": toy_id,"msg_type": "music","data": i.get("audio")
}returnsend_str
answer=tuling.to_tuling(q, toy_id)
res=text2audio(answer)
send_str={"code": 0,"from_user": toy_id,"msg_type": "chat","data": res
}return send_str
View Code
重启 manager.py和im_serv.py
让2个玩具开机,说一段话: 上海的天气怎么样
网页会播放: 上海:周四,多云转阴 东北风4-5级,最低气温22度,最高气温27度
查看Pycharm控制台输出:
上海的天气怎么样
上海:周四,多云转阴 东北风4-5级,最低气温22度,最高气温27度
三、打包apk
单击打原生安装包
必须要登录账号才行
注意:默认是使用HBuilder的图标,这样不好。
点击android。因为苹果要相关证书才行,我没有。
去掉下面的广告。点击参数配置
输入应用名称
点击图标配置
上传一个图标图片,必须是png格式的!
点击自动生成并替换
点击启动图片配置,就是 app启动的时候,加载的图片
找到android,选择1080p图片,并上传!
这里有很多sdk,可以配置
这里都不用sdk
点击模块权限配置
默认是这些权限,右侧可以增加
点击代码视图
这个,就是刚刚所有的配置, 使用Ctrl+s 进行保存
保存就是这个文件
重新点击 打原生安装包
点击忽略
点击确认
它就会在云端打包,它会给你加一个壳子
如果提示报错
点击 重新打包原生,点击参数配置,在这类,重新云端获取!
打包成功后,查看打包状态
这样,表示成功了!
点击手动下载,下载成功!
直接将apk拖动过去,点击应用
效果如下:
总结:
1.说说你智能玩具的项目:
目的:关爱留守儿童, 让玩具成为父母间沟通的桥梁, 让玩具成为孩子的玩伴
实现无屏社交,依靠孩子的语音指令做出响应,例如我要和爸爸聊天,玩具会提示可以和爸爸聊天了并打开与app通讯的链接
我要听世上只有妈妈好,玩具就会依照指令播放相应的内容2.智能玩具有什么功能:
功能: 玩具可以语音点播朗诵诗歌,播放音乐,做游戏-成语接龙,与智能机器人聊天,玩具与玩具之间的通讯
手机app的im通讯 ,手机app可以为玩具点播歌曲,通过手机app管理玩具
高人:3.智能部分使用了什么算法:
两种回答:1.使用百度ai中的语音合成和语音识别,点播功能是使用Gensim jieba 库进行训练的,聊天做游戏是用的图灵机器人+百度语音合成2.使用百度ai中的语音合成和语音识别 NLP自然语言处理 点播功能基于百度NLP,聊天做游戏是用的图灵机器人+百度语音合成4.IM通讯使用了什么机制:
Websocket
magicString5.手机app是怎么做的(使用什么方式):
mui+html5plus6.谈谈你对人工智能的理解(说出人工智能技术的关键字至少5个):
语音类 : 语音识别 语音合成
图像类 : 图像识别 文字识别 人脸识别 视频审核
语言类 : 自然语言处理 机器翻译 词法分析 依存句法分析 文本纠错 对话情绪识别 词向量表示 短文本相似度
词义相似度 情感倾向分析7.mongodb相关:1.修改器: $push $set $pull $inc $pop2.说说你对 $ 的理解 : $ 我的理解就是代指符号,代指所查询到的数据或索引位置3.Mongodb中的数据类型 : ObjectID String Boolean Integer Double Arrays Object(Dict) Null Timestamp Date4.mongodb的比较符 : $lt $gt $lte $gte ":"
8.公司组织架构:1.综合人力财务行政:1个小姐姐2.营销部:老张3.产品部:老李 +UI小姐姐4.软件部:闫帅 + 前端小姐姐 +我5.硬件部:江老师9.项目不做底层,只使用三方的原因:
制作底层大量占用人力,公司资金不足以支撑底层研发
将大量成本投入到硬件研发中10. 项目中,涉及到的技术
智能语音识别-第三方百度ai
开机提示
自然语言处理(nlp)
点歌 :内容点播
开启消息发送
基于通讯录的即时通讯(IM)
websocket
不用第三方的原因 保护隐私
管理玩具的功能:1.通过扫描二维码 绑定玩具2.玩具通讯录管理
View Code
完整终极代码,请参考github:
附带项目需要的所有文件,包括音频,图片,数据库等等