数学作图工具_数学趣览X 曾让古希腊人犯怵的三大几何作图难题

点击蓝字 关注我们

古代希腊人较重视直尺和圆规作图,以在数学中训练人的逻辑思维能力,发展其智力。因此,他们较大的限制了直尺和圆规这两种作图工具的使用:①作图时,只能有限次使用直尺和圆规;②不能利用直尺上的刻度或其他记号;③不能把直尺和圆规合并使用,也不能把几个直尺合并使用。在这种限制下,即便一些简单的几何作图也无法解决。最著名的是被称为几何三大难题的三个古希腊作图难题,即三等分任意角问题、立方倍积问题和化圆为方问题。

当时很多有名的希腊数学家,都曾着力研究过这三大难题,但由于尺规作图的限制都一直未能如愿。两千年来几十代人为之绞尽脑汁,均以失败告终。直到19世纪90年代,人们证明了这三个问题不可能用“尺规作图”来解决,这才结束了历时两千年的数学难题公案。因此,现今的中学生们不必再去搞什么“几何三大难题”,避免再去步前人失败的后尘。值得一提的是,如果允许借助其他工具或曲线,这“三大难题”都可以解决,也就不成其为“难题”了。

e221bce3a797d31d7b8aacc7135cce76.gif

1. 三大几何难题的由来

830f5c17fdcafbf33d86ef112203e393.gif

(1)三等分任意角问题。就是仅用直尺和圆规将任意角三等分。一条线段,可以很容易地将其三等分。不仅三等分,而且可以任意等分。借助数学联想很容易把这种想法移植到角上,即将角三等分。这是历史上最为长久、流传最为广泛、耗费人的精力最多的一道几何作图题。

(2)立方倍积问题。就是要求作一个立方体,使其体积等于已知立方体体积的两倍。关于立方倍积问题的产生,有这样一个传说:公元前400多年,古希腊德里斯群岛上流行着瘟疫,死亡阴影笼罩着人们。人们对瘟疫束手无策,于是就到神庙去祈求太阳神阿波罗的保护。阿波罗的代言人——神殿的女司祭毕菲亚对大家说,这次瘟疫是神认为您们对神不够虔诚的惩罚。神殿里的正方体祭坛太小了,要使它仍保持正方体,但体积应为原来的两倍,这样神就可免除您们的灾难。于是“立方倍积”问题便流传开了。

(3)化圆成方问题。求作一个正方形,使它的面积等于已知圆的面积。从数学思想最基本的逻辑学观点来看,这个问题的产生似乎是必然的。如果您得到一个圆规,画出的第一个图形就是圆。另外,还有一个十分自然的图形——正方形。其中每一个图形都有一个确定的面积。在这两个具有相同面积的图形之间,可以自然地搭起一座桥来,就是其中的一个图形变换成另一个图形。因为变换只能用圆规和直尺,所以就可能产生这样个问题:利用圆规和直尺作出一个面积等于已知圆面积的正方形的一条边。这就是“化圆成方”问题。

e221bce3a797d31d7b8aacc7135cce76.gif

2. 三大几何作图问题为什么不能用尺规作出

830f5c17fdcafbf33d86ef112203e393.gif

在平面几何作图题里,总可以把一条已知线段(或给定的某一线段)当作“单位长线段”,即可把已知线段作为长度为1的线段。于是利用尺规作图,很容易将该线段n等分,从而求得1/n的线段,再将此线段m倍,又可得m/n的线段。于是一切以有理数为长度的线段都可以作出来。

设r为任一正有理数,则以平方根长度的线段也可以作出来。事实上如图1所示,利用1+r为直径作半圆,从线段连接点P引垂线交半圆周于Q,则

e385dc56747ae85f51164a973f329557.png

。由此可知,一切以正有理数的平方根为长度的线段都可用尺规作出来。

b75dae2a69d04b7baa8d7f64e837aaa9.png

反复利用上述方法,又可将

d166d96ec6833fd58b85a92fa166c20a.png

为长度的线段作出来。一般说来,只要是由有理数经过有限多次“加、减、乘(乘方)、除、开平方”五则运算得出的数量,都可以用尺规作出以这些数量为长度的线段来,我们把这些数量叫作“可作图几何量”。例如下面的数量:

482b7cf3fb7aa66f807a81290657bd9f.png

就是一个“可作图几何量”。因此,要判断一个平面几何上的图形是否用尺规可作,只要分析一下所要确定的几何量是否为“可作图几何量”就行了。

现在我们回到三大几何作图难题上来

(1)三等分任意角问题:设已知角的三分之一为a,则已角为3a,取它的余弦,由三倍角余弦公式得cos3a=4cos3a-3cosa,即8cos3a-6cosa-2cos3a=0,令2cos3a=m,2cosa=x,则可得到:x3-3x-m=0,这就是三等分任意角的代数方程。如果这个方程的根x可用尺规作图作出来,则角的大小也可用尺规作出来,然而这个方程的根不能表示成“可作图几何量”。因此,三等分任意角问题不可能用尺规作图作出。

(2)立方倍积问题:设正方体祭坛的棱长为a,新立方体祭坛的棱长x,则有x3=2a3,不妨设a=1,于是

e7ab98b293cce64a0267cf6a09c12cca.png

。而

cc2cc7481fa91b1ae654d0b32768791d.png

不是“+、-、x、÷、√”五种运算所能得出的。所以它是一个“非几何作图量”。

3dfb00eab1f476454eb0d79bc3dc3882.png e221bce3a797d31d7b8aacc7135cce76.gif

3. 不用尺规作图时“三大几何难题”的可能性

830f5c17fdcafbf33d86ef112203e393.gif

(1)三等分任意角问题:如图2所示,设所要三等分角为∠AOB,取一直尺,其一端点为P,另在尺边缘上取一点Q,以O为圆心,OQ为半径作半圆交∠AOB的两边于A、B。P点在OA的反向延长线上移动,Q点在半圆上移动。当直尺刚好通过B点时,画出直线PQB,这时不难证得∠APB=1/3∠AOB(证略)。

63990cb9099276bf6678b3005630be33.png

(2)立方倍积问题:如图3所示,作互相垂直且交于O的两条直线m和n,分别在其上取OA=a,OB=2a。取两个其边互相垂直的L型曲尺,使一个曲尺的顶点在n上,过A点;另一曲尺的一边过B点,顶点在m上,且两曲尺的一边互相密合。这样两曲尺的顶点分别在m, n上确定了C、D两点,OC即所求正方体棱长x。

da47d132123a6b2a6471df3976a18701.png 1aded22e91a193f73f399ecdc63b1f9f.png

化圆成方问题:如图4所示,设已知圆半径为r,则它的面积为πr2。我们用木料作一正圆柱体,使其下底与已知圆等积,高为r/2。然后,把这圆柱在平面上滚一周,在平面上就滚出了一个矩形。它的长为2πr,宽为r/2,则这个矩形面积为2πr*r/2=πr2,与圆面积是相等的。这样问题就变为求作一个正方形与此矩形具有相等的面积,这显然是容易办到的。

6b2811dafba98745829f1c2fa17399fb.png

往期精彩回顾:

数学周报早知道XLⅢ 2020.07.06

微积分先驱ⅩⅦ天体力学的奠基者开普勒

李天岩:回首来时路

哲学对基础学科有什么作用

在数学的演进中体验数学的本质

飞鸟与蛙|数学发展呼唤帅才

92b9d74f60d435bbdee7776028087b41.png

数学经纬网

秉科学之魂,析数学之美

我知道你在看

afde106af7e1466063a0f423799d938c.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值