srfft Matlab,科学网—Matlab实现FFT变换 - 任占兵的博文

Matlab实现FFT变换(单边谱及双边谱)

以前对于Fourier Transform从来没有细究,不管在LabVIEW还是Matlab里都有现成的FFT(快速Fourier Transform)函数,输入相应的参数就可以了。

在Matlab下

y=fft(x,nfft);

x为输入

nfft为快速傅立叶变换的点数

LabVIEW下,同样输入x及变换的点数,还有一个布尔控制,是否shift?

下面的例子,先进行fourier transform,即双边谱

程序代码

fs=100;%设定采样频率

N=128;

n=0:N-1;

t=n/fs;

f0=10;%设定正弦信号频率

%生成正弦信号

x=sin(2*pi*f0*t);

figure(1);

subplot(231);

plot(t,x);%作正弦信号的时域波形

xlabel('t');

ylabel('y');

title('正弦信号y=2*pi*10t时域波形');

grid;

%进行FFT变换并做频谱图

y=fft(x,N);%进行fft变换

mag=abs(y);%求幅值

f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换

figure(1);

subplot(232);

plot(f,mag);%做频谱图

axis([0,100,0,80]);

xlabel('频率(Hz)');

ylabel('幅值');

title('正弦信号y=2*pi*10t幅频谱图N=128');

grid;

%求均方根谱

sq=abs(y);

figure(1);

subplot(233);

plot(f,sq);

xlabel('频率(Hz)');

ylabel('均方根谱');

title('正弦信号y=2*pi*10t均方根谱');

grid;

%求功率谱

power=sq.^2;

figure(1);

subplot(234);

plot(f,power);

xlabel('频率(Hz)');

ylabel('功率谱');

title('正弦信号y=2*pi*10t功率谱');

grid;

%求对数谱

ln=log(sq);

figure(1);

subplot(235);

plot(f,ln);

xlabel('频率(Hz)');

ylabel('对数谱');

title('正弦信号y=2*pi*10t对数谱');

grid;

%用IFFT恢复原始信号

xifft=ifft(y);

magx=real(xifft);

ti=[0:length(xifft)-1]/fs;

figure(1);

subplot(236);

plot(ti,magx);

xlabel('t');

ylabel('y');

title('通过IFFT转换的正弦信号波形');

grid;

下面进行单边谱计算:

程序代码

fs=100;%设定采样频率

N=128;

n=0:N-1;

t=n/fs;

f0=10;%设定正弦信号频率

%生成正弦信号

x=sin(2*pi*f0*t);

figure(1);

subplot(231);

plot(t,x);%作正弦信号的时域波形

xlabel('t');

ylabel('y');

title('正弦信号y=2*pi*10t时域波形');

grid;

%进行FFT变换并做频谱图

y=fft(x,N);%进行fft变换

mag=abs(y);%求幅值

m=length(y);

f=(0:m/2-1)'*fs/m;%进行对应的频率转换

figure(1);

subplot(232);

plot(f,mag(1:m/2));%做频谱图

axis([0,100,0,80]);

xlabel('频率(Hz)');

ylabel('幅值');

title('正弦信号y=2*pi*10t幅频谱图N=128');

grid;

%求均方根谱

sq=abs(y);

figure(1);

subplot(233);

plot(f,sq(1:m/2));

xlabel('频率(Hz)');

ylabel('均方根谱');

title('正弦信号y=2*pi*10t均方根谱');

grid;

%求功率谱

power=sq.^2;

figure(1);

subplot(234);

plot(f,power(1:m/2));

xlabel('频率(Hz)');

ylabel('功率谱');

title('正弦信号y=2*pi*10t功率谱');

grid;

%求对数谱

ln=log(sq);

figure(1);

subplot(235);

plot(f,ln(1:m/2));

xlabel('频率(Hz)');

ylabel('对数谱');

title('正弦信号y=2*pi*10t对数谱');

grid;

%用IFFT恢复原始信号

xifft=ifft(y);

magx=real(xifft);

ti=[0:length(xifft)-1]/fs;

figure(1);

subplot(236);

plot(ti,magx);

xlabel('t');

ylabel('y');

title('通过IFFT转换的正弦信号波形');

grid;

+++++++本文转载于 Dinga's Blog http://www.dinga.cn +++++++

转载本文请联系原作者获取授权,同时请注明本文来自任占兵科学网博客。

链接地址:http://blog.sciencenet.cn/blog-38752-48060.html

上一篇:有限元分析

下一篇:实战origin

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值