泰勒公式推导过程_论泰勒级数在机器学习家庭中的地位

本文探讨泰勒级数在机器学习中的重要性,通过举例说明其在熵与基尼指数转化、XGBoost损失函数优化以及梯度下降法中的应用。泰勒级数用于多项式逼近函数,帮助理解和优化算法。
摘要由CSDN通过智能技术生成
02e103e0638ec526dbc35c61d2e1b78f.gif论泰勒级数的家庭地位 02e103e0638ec526dbc35c61d2e1b78f.gif

胖友们,很久没见了,最近工作确实太忙。离上一篇文章的时间已经有一个多月了。上回说到学习python占用了我很大部分的时间。但是在一次我面试别人与别人的交流中,我醒悟到了一些机器学习理论基础的重要性,最近多花了一些时间这方面的学习上。因为在一些业务场景中,我们在建模的时候必须要知道怎样样的算法才能结合业务产生价值,那算法理论就是我们的基础。在学习的过程中,我发现泰勒级数在机器学习理论中经常用到,如xgboost的推导。但是在跟一些朋友的交流中,他们会提问,他们虽然大致知道泰勒级数式长什么样的,但一些背景和详细解释没有太了解,导致在后面的学习中一脸懵逼,没办法把知识点串联起来。所以这次想看看我们这次的学习分享能不能帮到大家。那么我们应该怎么去理解泰勒级数和泰勒级数在机器学习领域中的应用?我们可以从泰勒级数的定义和它在机器学习中的应用例子说起。

01 泰勒级数是什么

泰勒级数是以于1715年发表了泰勒公式的英国数学家布鲁克·泰勒(Sir Brook Taylor)的名字来命名的。通过函数在自变量零点的导数求得的泰勒级数又叫做迈克劳林级数,以苏格兰数学家科林·麦克劳林

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
学习人工智能,机器学习都离不开数学基础和编程知识。无论你是数据科学的初学者还是已经从事人工智能开发的有经验人员,这门课都适合于你。为什么这么说?首先人工智能和机器学习本质上就是算法,而算法就是数学及统计学以及编程的结合。当前市场上有许多开源的软件包如SKLEARN确实可以帮助没经验的或缺乏数学或算法基础的人实现机器学习模型及预测,但这些工具无法使你真正懂得算法的本质或来源,或者无法使你在不同场合下灵活运用及改进算法。记住,在实际工作找到适合应用场景的解决方案是最难但是最重要的。但这离不开数学基础和算法理解。比如,线性回归是一类普遍的机器学习算法,所有的机器学习软件都有现成的方法实现模型,但如果在训练数据加入几条新数据,那么新建立的模型和原来的模型有和联系或不同?再比如,为什么深度神经网络的Sigmoid函数一般只用到输出层?神经网络的向后传播理论如何与泰勒展开和复合函数的偏导数联系在一起?人工智能推荐系统和文字向量如何与矩阵的奇异分解以及特征向量联系?模型对标签进行数据变换如何影响预测值?所有这些问题的答案,你都可以从本课找到线索。本课系统地讲述了有关人工智能,机器学习背后的数学知识。特别指出,微积分和代数知识是本课的核心。统计学基础被安排在另外的课程。除此之外,我在每一章节或主要知识点后都安排了各类程序以解释和回顾所学到的东西。最后要提到的是,这不是一门工程项目实践课。但我会另外专门安排有关人工智能,机器学习的实践课程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值