泰勒级数(Taylor series)用无限项连加式--级数来表示一个函数,这些相加的项由函数在某一点的导数求得.
函数在自变量0 的导数求得的泰勒级数又加做麦克劳林级数.
实际应用中,泰勒级数需要截断,只取有限项,可以用泰勒定理估算这种近似的误差。一个函数的有限项的泰勒级数叫做泰勒多项式。一个函数的泰勒级数是其泰勒多项式的极限(如果存在极限)。即使泰勒级数在每点都收敛,函数与其泰勒级数也可能不相等。在开区间(或复平面上的开区间)上,与自身泰勒级数相等的函数称为解析函数。
在数学上,对于一个在实数或复数邻域上,以实数作为变量的函数或以复数作为变量的,并且是无穷可微的函数,它的泰勒级数是以下这种形式的幂级数:
这里,表示的阶乘,而表示函数在点处的阶导数。如果,也可以把这个级数称为麦克劳林级数。
常用的级数
几何级数 :
二项式展开中的是二项式系数。
以为底数的指数函数的麦克劳林序列是
(对所有X都成立)
以为底数的自然对数的麦克劳林序列是
(对于在区间(-1,1]内所有的X都成立)
常用的三角函数可以被展开为以下的麦克劳林序列:
通俗易懂的泰勒展开微积分推导过程
转载自:https://blog.csdn.net/qq_36330643/article/details/77288486
相信大家都会求导吧,给定一个f(x),都可以唯一确定一个导函数f '(x),导函数给出了原函数的变化情况。
比如导函数为
但是,倒过来就不行了,一个导函数对应原函数为,,………无穷多个。
写成积分形式就是
具体求导过程很多,自己看,为什么呢,因为在求导的过程中,我们虽然得到的函数今后的变化情况,但损失了一部分信息,就是原函数的初始值。概括一下,
原函数的信息=导函数的信息+初始值信息,
初始值信息没了,一个导函数就对应多个原函数了。
知道了原因,我们就可以去掉上面那个恼人的C了,加入初始值信息就好了。
那个f(0)就是初始信息。当然初始信息可以从任意位置开始,不一定从0开始
这时候我们得到了
(原函数的信息=导函数的信息+初始值信息)
继续这个过程
代入得
再接着做下去
无限做下去,前面是余项,整个是泰勒展开式
泰勒公式
公式描述:
泰勒公式可以用若干项连加式来表示一个函数,这些相加的项由函数在某一点的导数求得。
在泰勒公式中,取x0=0,得到的级数
称为麦克劳林级数。函数 的麦克劳林级数是x的幂级数,那么这种展开是唯一的,且必然与的麦克劳林级数一致。
也就是:泰勒公式:
更通俗点的解释, 可以从物理的角度理解.
转载自:https://www.zhihu.com/question/21149770/answer/68051674
① 一小滑块以的初速度,从处运动(以向右为正方向),求s时小滑块的路程。
坐在台下的你拍腿大叫so easy,以迅雷不及掩耳之势写下了第一题答案。
② 一小滑块以的初速度,的加速度,从处运动(以向右为正方向),求s时小滑块的路程。
不难!高中也学过的样子!
③一小滑块以的初速度,的初加速度,的初加加速度,从处运动(以向右为正方向),求s时小滑块的路程。
初加加速度?什么鬼,就是加速度对时间求导吧,好像也不难。
好了让我们停下这简单枯燥的物理题,把结果放在一起看一下有什么规律。
①
②
③
似乎发现了那么一点小意思,再让我们稍微改变一下③中第一个式子的形式。
这个时候,高数老师又出了一道新的题。
④一小滑块以的初速度,的初加速度,的初加加速度,的初加加加速度,的初加加加加速度……从处运动(表征了一个小滑块任意运动的情况)(以向右为正方向),求s时小滑块的路程。
好像以你的智力并不可以想明白这个道题怎么写,不过不怕,你可以找规律。
让我们根据①②③中的导数情况把,,,等换成与有关的式子。
等等,好像这个公式在哪里见过。
泰勒公式:
你无意中居然推导出了“泰勒”公式,让我们仔细看一看“推导”的过程。
匀速直线运动是泰勒公式的情况。
匀加速度直线运动是泰勒公式的情况。
……
一个任意的运动是泰勒公式的情况。
开动我们机智的小脑瓜,总结一下上面的情况。
泰勒公式可以把一个可导的函数拆成若干个多项式之和。
当n越大,若干个多项式之和逼近于原函数的值。