机器学习之数学基础 二 .泰勒级数

泰勒级数(Taylor series)用无限项连加式--级数来表示一个函数,这些相加的项由函数在某一点的导数求得. 

函数在自变量0 的导数求得的泰勒级数又加做麦克劳林级数.

实际应用中,泰勒级数需要截断,只取有限项,可以用泰勒定理估算这种近似的误差。一个函数的有限项的泰勒级数叫做泰勒多项式。一个函数的泰勒级数是其泰勒多项式的极限(如果存在极限)。即使泰勒级数在每点都收敛,函数与其泰勒级数也可能不相等。在开区间(或复平面上的开区间)上,与自身泰勒级数相等的函数称为解析函数

在数学上,对于一个在实数复数a邻域上,以实数作为变量的函数以复数作为变量的,并且是无穷可微的函数f(x),它的泰勒级数是以下这种形式的幂级数

\sum _{n=0}^{\infty }{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}

这里,n!表示n阶乘,而f^{(n)}(a)\,\!表示函数f在点a处的n导数。如果a=0,也可以把这个级数称为麦克劳林级数

 

常用的级数

几何级数 :{\frac {1}{1-x}}=\sum _{n=0}^{\infty }x^{n}\quad \forall x:\left|x\right|<1

二项式定理{\displaystyle (1+x)^{\alpha }=\sum _{n=0}^{\alpha }C(\alpha ,n)x^{n}\quad \forall x:\left|x\right|<1,\forall \alpha \in \mathbb {C} }

二项式展开中的{\displaystyle C(\alpha ,n)}二项式系数

e为底数的指数函数的麦克劳林序列是

e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}\quad \forall x (对所有X都成立)

e为底数的自然对数的麦克劳林序列是

\ln(1+x)=\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}x^{n}\quad \forall x\in (-1,1] (对于在区间(-1,1]内所有的X都成立)

常用的三角函数可以被展开为以下的麦克劳林序列:

{\displaystyle {\begin{aligned}\sin x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}x^{2n+1}&&=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-\cdots &&\forall x\\[6pt]\cos x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}x^{2n}&&=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-\cdots &&\forall x\\[6pt]\tan x&=\sum _{n=1}^{\infty }{\frac {B_{2n}(-4)^{n}\left(1-4^{n}\right)}{(2n)!}}x^{2n-1}&&=x+{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}+\cdots &&\forall x:|x|<{\frac {\pi }{2}}\\[6pt]\sec x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}E_{2n}}{(2n)!}}x^{2n}&&=1+{\frac {x^{2}}{2}}+{\frac {5x^{4}}{24}}+\cdots &&\forall x:|x|<{\frac {\pi }{2}}\\[6pt]\arcsin x&=\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}&&=x+{\frac {x^{3}}{6}}+{\frac {3x^{5}}{40}}+\cdots &&\forall x:|x|\leq 1\\[6pt]\arccos x&={\frac {\pi }{2}}-\arcsin x\\&={\frac {\pi }{2}}-\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}&&={\frac {\pi }{2}}-x-{\frac {x^{3}}{6}}-{\frac {3x^{5}}{40}}+\cdots &&\forall x:|x|\leq 1\\[6pt]\arctan x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n+1}}x^{2n+1}&&=x-{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}-\cdots &&\forall x:|x|\leq 1,\ x\neq \pm i\end{aligned}}}

 

 

 

通俗易懂的泰勒展开微积分推导过程

转载自:https://blog.csdn.net/qq_36330643/article/details/77288486

相信大家都会求导吧,给定一个f(x),都可以唯一确定一个导函数f '(x),导函数给出了原函数的变化情况。
比如f(x)=x^{3}导函数为f^{'} (x)=3 x^{2}

但是,倒过来就不行了,一个导函数f^{'} (x)=3 x^{2}对应原函数为f(x)=x^{3}f(x)=x^{3} +1f(x)=x^{3} +2………无穷多个。
写成积分形式就是
\int_{}^{} 3x^{2}\cdot  dx=x^{3} +C

具体求导过程很多,自己看,为什么呢,因为在求导的过程中,我们虽然得到的函数今后的变化情况,但损失了一部分信息,就是原函数的初始值。概括一下,
原函数的信息=导函数的信息+初始值信息,
初始值信息没了,一个导函数就对应多个原函数了。

知道了原因,我们就可以去掉上面那个恼人的C了,加入初始值信息就好了。

\int_{0}^{x} f'(x)\cdot  dx+f(0)
=\int_{0}^{x} 3x^{2}\cdot  dx+0^{3}
=x^{3} +C-0^3-C+0^3
=x^3=f(x)
那个f(0)就是初始信息。当然初始信息可以从任意位置开始,不一定从0开始
这时候我们得到了
f(x)=\int_{0}^{x} f'(x)\cdot  dx+f(0) (原函数的信息=导函数的信息+初始值信息)
继续这个过程
f'(x)=\int_{0}^{x} f''(x)\cdot  dx+f'(0)
代入得
f(x)=\int_{0}^{x} (\int_{0}^{x} f''(x)\cdot  dx+f'(0))\cdot  dx+f(0)
=\int_{0}^{x} \int_{0}^{x} f''(x)\cdot  dx\cdot  dx+\int_{0}^{x}  f'(0)\cdot  dx+f(0)
=\int_{0}^{x} \int_{0}^{x} f''(x)\cdot  dx\cdot  dx+\frac{x}{1!} f'(0)+f(0)

再接着做下去
=\int_{0}^{x}\int_{0}^{x} \int_{0}^{x} f'''(x)\cdot  dx\cdot  dx\cdot  dx+\frac{x^2}{2!} f''(0)+\frac{x}{1!} f'(0)+f(0)
无限做下去,前面是余项,整个是泰勒展开式
 

泰勒公式

  • formula

    公式描述:

    泰勒公式可以用若干项连加式来表示一个函数,这些相加的项由函数在某一点的导数求得。

    在泰勒公式中,取x0=0,得到的级数

    称为麦克劳林级数。函数 

     的麦克劳林级数是x的幂级数,那么这种展开是唯一的,且必然与 

     的麦克劳林级数一致。


    也就是:泰勒公式:f(x)=\frac{f(x)}{0!} +\frac{f(x)^{(1)}}{1!}x+\frac{f(x)^{(2)}}{2!}x^{2} +\frac{f(x)^{(3)}}{3!}x^{3}+\frac{f(x)^{(4)}}{4!}x^{4}+......\frac{f(x)^{(n)}}{n!}x^{n}
  •  

更通俗点的解释, 可以从物理的角度理解.

转载自:https://www.zhihu.com/question/21149770/answer/68051674

 

一小滑块以v_{0}的初速度,从x=s_{0}处运动(以向右为正方向),求ts时小滑块的路程S
坐在台下的你拍腿大叫so easy,以迅雷不及掩耳之势写下了第一题答案。
S=s_{0} +v_{0} tS^{'}  =v_{0}
一小滑块以v_{0}的初速度,a的加速度,从x=s_{0}处运动(以向右为正方向),求ts时小滑块的路程S
不难!高中也学过的样子!
S=s_{0} +v_{0} t+\frac{1}{2} at^{2}S^{'}  =v_{0} +atS^{''}=a
③一小滑块以v_{0}的初速度,a的初加速度,b的初加加速度,从x=s_{0}处运动(以向右为正方向),求ts时小滑块的路程S
初加加速度?什么鬼,就是加速度对时间求导吧,好像也不难。
S=s_{0} +v_{0} t+\frac{1}{2} at^{2} +\frac{1}{6} bt^{3}S^{'}  =v_{0} +at+\frac{1}{2}bt^{2}S^{'''}=a+btS^{''''}=b

好了让我们停下这简单枯燥的物理题,把结果放在一起看一下有什么规律。
S=s_{0} +v_{0} tS^{'}  =v_{0}
S=s_{0} +v_{0} t+\frac{1}{2} at^{2}S^{'}  =v_{0} +atS^{''}=a
S=s_{0} +v_{0} t+\frac{1}{2} at^{2} +\frac{1}{6} bt^{3}S^{'}  =v_{0} +at+\frac{1}{2}bt^{2}S^{'''}=a+btS^{''''}=b
似乎发现了那么一点小意思,再让我们稍微改变一下③中第一个式子的形式。
S=s_{0} +\frac{1}{1!} v_{0} t+\frac{1}{2!} at^{2} +\frac{1}{3!} bt^{3}

这个时候,高数老师又出了一道新的题。
④一小滑块以v_{0}的初速度,a的初加速度,b的初加加速度,c的初加加加速度,d的初加加加加速度……从x=s_{0}处运动(表征了一个小滑块任意运动的情况)(以向右为正方向),求ts时小滑块的路程S
好像以你的智力并不可以想明白这个道题怎么写,不过不怕,你可以找规律。
S=s_{0} +\frac{1}{1!} v_{0} t+\frac{1}{2!} at^{2} +\frac{1}{3!} bt^{3} +\frac{1}{4!} ct^{4} +\frac{1}{5!} dt^{5} +\frac{1}{6!}e t^{6}...
让我们根据①②③中S的导数情况把v_{0},a,b,c等换成与S有关的式子。
S=\frac{s_{0}}{0!} +\frac{S^{(1)}}{1!}t+\frac{S^{(2)}}{2!}t^{2} +\frac{S^{(3)}}{3!}t^{3}+\frac{S^{(4)}}{4!}t^{4}+......\frac{S^{(n)}}{n!}t^{n}
等等,好像这个公式在哪里见过。
泰勒公式:f(x)=\frac{f(x)}{0!} +\frac{f(x)^{(1)}}{1!}x+\frac{f(x)^{(2)}}{2!}x^{2} +\frac{f(x)^{(3)}}{3!}x^{3}+\frac{f(x)^{(4)}}{4!}x^{4}+......\frac{f(x)^{(n)}}{n!}x^{n}

你无意中居然推导出了“泰勒”公式,让我们仔细看一看“推导”的过程。
匀速直线运动是泰勒公式n=1的情况。
匀加速度直线运动是泰勒公式n=2的情况。
……
一个任意的运动是泰勒公式n\rightarrow \infty的情况。
开动我们机智的小脑瓜,总结一下上面的情况。
泰勒公式可以把一个可导的函数拆成若干个多项式之和。
当n越大,若干个多项式之和逼近于原函数的值

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值