在我的应用程序中,我在可能的情况下从R转换为本机Python(scipy matplotlib),其中一个最大的任务是从R热图转换为matplotlib热图. This post引导我进行移植.虽然大部分都是无痛的,但我仍然不相信色彩图.
在显示代码之前,解释:在R代码中我定义了“中断”,即从最低值开始直到10的固定数量的点,并且理想地以数据的中值为中心.它的等价物在于numpy.linspace:
# Matrix is a DataFrame object from pandas
import numpy as np
data_min = min(matrix.min(skipna=True))
data_max = max(matrix.max(skipna=True))
median_value = np.median(matrix.median(skipna=True))
range_min = np.linspace(0,median_value,50)
range_max = np.linspace(median_value,data_max,50)
breaks = np.concatenate((range_min,range_max))
这给了我们100分将用于着色.但是,我不确定如何在Python中完成同样的事情.目前我有:
def red_black_green():
cdict = {
'red': ((0.0,0.0,0.0),(0.5,(1.0,1.0,1.0)),'blue': ((0.0,0.0)),'green': ((0.0,1.0),0.0))
}
my_cmap = mpl.colors.LinearSegmentedColormap(
'my_colormap',cdict,100)
return my_cmap
我做得更进一步:
# Note: vmin and vmax are the maximum and the minimum of the data
# Adjust the max and min to scale these colors
if vmin > 0:
norm = mpl.colors.Normalize(vmin=0,vmax=vmax / 1.08)
else:
norm = mpl.colors.Normalize(vmin / 2,vmax / 2)
这些数字完全是经验性的,这就是为什么我想把它变成更强大的东西.如何根据中位数对我的色彩图进行标准化,还是需要进行标准化?