使用pytorch实现Inception模块

这篇博客介绍了如何在PyTorch中自定义实现Inception模块,详细讲解了其结构,包括1*1卷积、3*1卷积、5*1卷积以及池化的组合使用,并提到了在实际应用中的例子,如openface项目中的卷积网络部分。
摘要由CSDN通过智能技术生成

在pytorch中没有找到Inception模块,自己写了一个,以供调用。
Inception模块的顺序为:
1. 输入 -> 1*1卷积 -> BatchNorm -> ReLU -> 1*5卷积 -> BatchNorm -> ReLU
2. 输入 -> 1*1卷积 -> BatchNorm -> ReLU -> 1*3卷积 -> BatchNorm -> ReLU
3. 输入 -> 池化 -> 1*1卷积 -> BatchNorm -> ReLU
4. 输入 -> 1*1卷积 -> BatchNorm -> ReLU
其中,1和2步骤可以重复多次。最后将所有结果串接起来。
pytorch中实现如下,应用例子见我的下一篇文章:openface(三):卷积网络。

import torch.nn as nn
class Inception(nn.Module):
    def __init__(self, inputSize, kernelSize, kernelStride, outputSize, 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值