PyTorch基础(五)搭建Inception网络模型

上一篇博客中写了如何搭建基础的CNN网络,然后我又学习了比基本高级一点的神经网络框架,Inception框架,这个框架的核心作用就是不需要人为决定使用哪个过滤器,或者是够需要池化,而是由网络自己决定这些参数,你可以给网络添加这些参数可能的值,然后把这些输出连接起来,让网络自己学习这些参数,网络自己决定采用哪些过滤器组合。

这篇博客利用Inception网络来训练mnist数据集,关键在于如何搭建Inception那个部分的网络架构。

1、Inception网络图形

 从上面这张图片中可以看出,共有四个部分组成,经过这四个部分之后,会形成24+24+24+16=88个通道,这是这个网络的关键点,也是有助于后面计算维度。

2、导入相关库、数据增强、构造数据

import torch
from torchvision import datasets
from torchvision import transforms
import torch.nn.functional as F
from torch.utils.data import DataLoader


#数据增强
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,),(0.3081,))
])

#下载数据集
train_dataset = datasets.MNIST(
    root='../dataset/mnist',
    download=False,
    train=True,
    transform=transform
)

test_dataset = datasets.MNIST(
    root='../dataset/mnist',
    download=False,
    train=False,
    transform=transform
)

#构造数据集
train_loader = DataLoader(
    dataset=train_dataset,
    batch_size=64,
    shuffle=True
)

test_loader = DataLoader(
    dataset=test_dataset,
    batch_size=64,
    shuffle=True
)

这一部分和上一篇博客中的导入数据部分一样,利用pytorch中的datasets和DataLoader构造训练集和测试集。

3、构建Inception模型(关键部分)

这是这一篇博客的重点,这也是我模仿者写代码的过程,自己一开始肯定不会写的。

#盗梦空间网络结构Inception
class InceptionA(torch.nn.Module):
    def __init__(self,in_channels):
        super(InceptionA,self).__init__()

        #第一个分支 1*1  输出通道数16
        self.branch1x1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)

        #第二个分支 输出通道数24
        self.branch5x5_1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
        self.branch5x5_2 = torch.nn.Conv2d(16,24,kernel_size=5,padding=2)

        #第三个分支 输出通道数24
        self.branch3x3_1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
        self.branch3x3_2 = torch.nn.Conv2d(16,24,kernel_size=3,padding=1)
        self.branch3x3_3 = torch.nn.Conv2d(24,24,kernel_size=3,padding=1)

        #第四个分支 输出通道数 24
        self.branch_pool = torch.nn.Conv2d(in_channels,24,kernel_size=1)


    def forward(self,x):

        brach1x1 = self.branch1x1(x)

        brach5x5 = self.branch5x5_1(x)
        brach5x5 = self.branch5x5_2(brach5x5)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)

        branch_pool = F.avg_pool2d(x,kernel_size=3,stride = 1,padding = 1)
        branch_pool = self.branch_pool(branch_pool)

        output = [brach1x1,brach5x5,branch3x3,branch_pool]

        return torch.cat(output,dim=1)

这个Inception部分代码具有重用性,因为再构造这个对象时,传入的参数是根据所搭建的模型而设置的,比如,网络给Inception传入通道数字为10,或者为20,都能满足情况,但是经过Inception模块,都会产生88个通道。

  #第一个分支 1*1  输出通道数16
        self.branch1x1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)

第一个分支很简单,就是输入通道需要传入Inception,输出通道数是16,卷积核的大小是1*1,经过这样的卷积层,会产生16个通道,宽度和高度不变

#第二个分支 输出通道数24
        self.branch5x5_1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
        self.branch5x5_2 = torch.nn.Conv2d(16,24,kernel_size=5,padding=2)

第二个分支有两个卷积层,第一个卷积层和第一个部分一样,都需要传入一个初始的通道数,输出通道为16,再Inception结构图中也能体现出来;第二个卷积层,使用的是same卷积,输入的高和宽经过卷积之后不变,这里有个小技巧,如何构造same卷积,当卷积核的大小为m是,padding为m/2即可,结果向下取整,输出通道数为88。

        #第三个分支 输出通道数24
        self.branch3x3_1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
        self.branch3x3_2 = torch.nn.Conv2d(16,24,kernel_size=3,padding=1)
        self.branch3x3_3 = torch.nn.Conv2d(24,24,kernel_size=3,padding=1)

第三个分支有三个卷积层,第一个卷积是1*1卷积,第二个卷积和第三个卷积都是same卷积。

        #第四个分支 输出通道数 24
        self.branch_pool = torch.nn.Conv2d(in_channels,24,kernel_size=1)

第四个分支是same池化,池化本来不改变通道数,但是,先利用same池化,然后利用1*1卷积改变通道数。

4、构建Net(关键部分)

#构建网络
class Net(torch.nn.Module):
    def __init__(self):
        super(Net,self).__init__()

        self.conv1 = torch.nn.Conv2d(1,10,kernel_size=5)
        self.conv2 = torch.nn.Conv2d(88,20,kernel_size=5)

        self.incep1 = InceptionA(in_channels=10)
        self.incep2 = InceptionA(in_channels=20)

        self.mp = torch.nn.MaxPool2d(2)

        self.fc = torch.nn.Linear(1408,10)

    def forward(self,x):
        batch_size = x.size(0)
        x = self.mp(F.relu(self.conv1(x)))
        x = self.incep1(x)
        x = self.mp(F.relu(self.conv2(x)))
        x = self.incep2(x)
        x = x.view(batch_size,-1)
        x = self.fc(x)
        return x

model = Net()

如何算理解模型,就是那一张图片放入模型中,计算出每一部分维度。

5、训练网络、测试网络

#构建损失器
criterion = torch.nn.CrossEntropyLoss()

#构建优化器
optimizer = torch.optim.SGD(model.parameters(),lr=0.01,momentum=0.5)

#训练网络
def train(epoch):
    runing_loss = 0

    for batchix,datas in enumerate(train_loader,0):
        inputs,label = datas

        optimizer.zero_grad()
        output = model(inputs)
        loss = criterion(output,label)
        loss.backward()
        optimizer.step()

        runing_loss +=loss.item()

        if batchix%300 == 299:
            print('[%d %3d] %.3f'%(epoch+1,batchix+1,runing_loss/300))
            runing_loss = 0

#测试网络
def test():
    total = 0
    correct = 0
    with torch.no_grad():
        for data in test_loader:
            inputs,label = data
            outputs = model(inputs)
            _,pre = torch.max(outputs,dim=1)
            total += label.size(0)
            correct += (pre==label).sum().item()
    print('准确率为%.3f%%' % (correct / total * 100))

if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

6、全部代码

import torch
from torchvision import datasets
from torchvision import transforms
import torch.nn.functional as F
from torch.utils.data import DataLoader


#数据增强
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,),(0.3081,))
])

#下载数据集
train_dataset = datasets.MNIST(
    root='../dataset/mnist',
    download=False,
    train=True,
    transform=transform
)

test_dataset = datasets.MNIST(
    root='../dataset/mnist',
    download=False,
    train=False,
    transform=transform
)

#构造数据集
train_loader = DataLoader(
    dataset=train_dataset,
    batch_size=64,
    shuffle=True
)

test_loader = DataLoader(
    dataset=test_dataset,
    batch_size=64,
    shuffle=True
)

#盗梦空间网络结构Inception
class InceptionA(torch.nn.Module):
    def __init__(self,in_channels):
        super(InceptionA,self).__init__()

        #第一个分支 1*1  输出通道数16
        self.branch1x1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)

        #第二个分支 输出通道数24
        self.branch5x5_1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
        self.branch5x5_2 = torch.nn.Conv2d(16,24,kernel_size=5,padding=2)

        #第三个分支 输出通道数24
        self.branch3x3_1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
        self.branch3x3_2 = torch.nn.Conv2d(16,24,kernel_size=3,padding=1)
        self.branch3x3_3 = torch.nn.Conv2d(24,24,kernel_size=3,padding=1)

        #第四个分支 输出通道数 24
        self.branch_pool = torch.nn.Conv2d(in_channels,24,kernel_size=1)


    def forward(self,x):

        brach1x1 = self.branch1x1(x)

        brach5x5 = self.branch5x5_1(x)
        brach5x5 = self.branch5x5_2(brach5x5)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)

        branch_pool = F.avg_pool2d(x,kernel_size=3,stride = 1,padding = 1)
        branch_pool = self.branch_pool(branch_pool)

        output = [brach1x1,brach5x5,branch3x3,branch_pool]

        return torch.cat(output,dim=1)

#构建网络
class Net(torch.nn.Module):
    def __init__(self):
        super(Net,self).__init__()

        self.conv1 = torch.nn.Conv2d(1,10,kernel_size=5)
        self.conv2 = torch.nn.Conv2d(88,20,kernel_size=5)

        self.incep1 = InceptionA(in_channels=10)
        self.incep2 = InceptionA(in_channels=20)

        self.mp = torch.nn.MaxPool2d(2)

        self.fc = torch.nn.Linear(1408,10)

    def forward(self,x):
        batch_size = x.size(0)
        x = self.mp(F.relu(self.conv1(x)))
        x = self.incep1(x)
        x = self.mp(F.relu(self.conv2(x)))
        x = self.incep2(x)
        x = x.view(batch_size,-1)
        x = self.fc(x)
        return x

model = Net()
print(model)
#构建损失器
criterion = torch.nn.CrossEntropyLoss()

#构建优化器
optimizer = torch.optim.SGD(model.parameters(),lr=0.01,momentum=0.5)

#训练网络
def train(epoch):
    runing_loss = 0

    for batchix,datas in enumerate(train_loader,0):
        inputs,label = datas

        optimizer.zero_grad()
        output = model(inputs)
        loss = criterion(output,label)
        loss.backward()
        optimizer.step()

        runing_loss +=loss.item()

        if batchix%300 == 299:
            print('[%d %3d] %.3f'%(epoch+1,batchix+1,runing_loss/300))
            runing_loss = 0

#测试网络
def test():
    total = 0
    correct = 0
    with torch.no_grad():
        for data in test_loader:
            inputs,label = data
            outputs = model(inputs)
            _,pre = torch.max(outputs,dim=1)
            total += label.size(0)
            correct += (pre==label).sum().item()
    print('准确率为%.3f%%' % (correct / total * 100))

if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

学了这几天的网络模型,感觉深度学习就像搭积木一样,最终看谁能把积木搭的最出色。。。。

  • 6
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
GoogleNet是一种深度卷积神经网络,它在2014年的ImageNet竞赛中取得了第一名的好成绩。下面是使用PyTorch搭建GoogleNet模型的代码: ``` import torch.nn as nn class InceptionModule(nn.Module): def __init__(self, in_channels, out1x1, reduce3x3, out3x3, reduce5x5, out5x5, pool_proj): super(InceptionModule, self).__init__() # 1x1 conv branch self.branch1 = nn.Sequential( nn.Conv2d(in_channels, out1x1, kernel_size=1), nn.BatchNorm2d(out1x1), nn.ReLU(inplace=True) ) # 1x1 conv -> 3x3 conv branch self.branch2 = nn.Sequential( nn.Conv2d(in_channels, reduce3x3, kernel_size=1), nn.BatchNorm2d(reduce3x3), nn.ReLU(inplace=True), nn.Conv2d(reduce3x3, out3x3, kernel_size=3, padding=1), nn.BatchNorm2d(out3x3), nn.ReLU(inplace=True) ) # 1x1 conv -> 5x5 conv branch self.branch3 = nn.Sequential( nn.Conv2d(in_channels, reduce5x5, kernel_size=1), nn.BatchNorm2d(reduce5x5), nn.ReLU(inplace=True), nn.Conv2d(reduce5x5, out5x5, kernel_size=5, padding=2), nn.BatchNorm2d(out5x5), nn.ReLU(inplace=True) ) # 3x3 max pooling -> 1x1 conv branch self.branch4 = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=1, padding=1), nn.Conv2d(in_channels, pool_proj, kernel_size=1), nn.BatchNorm2d(pool_proj), nn.ReLU(inplace=True) ) def forward(self, x): branch1_output = self.branch1(x) branch2_output = self.branch2(x) branch3_output = self.branch3(x) branch4_output = self.branch4(x) output = torch.cat([branch1_output, branch2_output, branch3_output, branch4_output], 1) return output class GoogleNet(nn.Module): def __init__(self, num_classes=1000): super(GoogleNet, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) self.conv2 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 192, kernel_size=3, padding=1), nn.BatchNorm2d(192), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) self.inception3a = InceptionModule(192, 64, 96, 128, 16, 32, 32) self.inception3b = InceptionModule(256, 128, 128, 192, 32, 96, 64) self.inception4a = InceptionModule(480, 192, 96, 208, 16, 48, 64) self.inception4b = InceptionModule(512, 160, 112, 224, 24, 64, 64) self.inception4c = InceptionModule(512, 128, 128, 256, 24, 64, 64) self.inception4d = InceptionModule(512, 112, 144, 288, 32, 64, 64) self.inception4e = InceptionModule(528, 256, 160, 320, 32, 128, 128) self.inception5a = InceptionModule(832, 256, 160, 320, 32, 128, 128) self.inception5b = InceptionModule(832, 384, 192, 384, 48, 128, 128) self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.dropout = nn.Dropout(p=0.4) self.fc = nn.Linear(1024, num_classes) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.inception3a(x) x = self.inception3b(x) x = self.inception4a(x) x = self.inception4b(x) x = self.inception4c(x) x = self.inception4d(x) x = self.inception4e(x) x = self.inception5a(x) x = self.inception5b(x) x = self.avg_pool(x) x = x.view(x.size(0), -1) x = self.dropout(x) x = self.fc(x) return x ``` 在这个例子中,我们实现了GoogleNet中的Inception模块和整个网络。通过将Inception模块堆叠在一起,就可以构建出GoogleNet模型了。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值