今天为大家介绍一类数据集:细粒度分类数据,本次介绍的几种数据集涵盖多个领域,包括动植物、飞机、零售业、汽车等。部分数据集小编已经下载好了,文末获取哦~
CUB-200-2011 鸟类数据集:
Caltech-UCSD Birds-200-2011 (CUB-200-2011) 是 CUB-200 dataset 的一个扩充版本,每个类的图像数量大约增加两倍和新的部位注释。
(1)类别数目: 200
(2)图像总数目: 11,788
(3)每张图片的标注信息: 15 Part Locations, 312 Binary Attributes, 1 Bounding Box
该数据集是细粒度图像分类最广泛使用的基准。该数据集涵盖了 200 种鸟类,其中包括 5994 张训练图像和 5794 张测试图像。除类别标签外,每个图像都会用 1 个边界框、15 个零件关键点和 312 个属性进行进一步注释。
Stanford Dogs Dataset 狗类数据集
斯坦福狗数据集:训练数据为 120 个品种狗狗的照片,共 10222 张。共 10357 张测试样本。它是 ImageNet 数据集的之类,可以用作细粒度分类。
Stanford Cars 汽车数据集
数据集组成:包含 196 种车辆的 16,185 张照片;其中训练集 8144,测试集 8041;
关键特征包括:车辆制造商、款式、生产日期(比如:2012 Tesla Model S);
相关论文