
在多元函数的领域里面,主要就是偏导的关系,所以我就为大家梳理了这些。同样那些定义定理我也不做证明,主要是说明一些不一定的反例。
同样在解释它们的关系之前我先说说这几个的定义。
偏导连续:先用定义求出该点的偏导数值c,再用求导公式求出不在该点时的偏导数
x方向的偏导.
设有二元函数 z=f(x,y) ,点
关于y方向的偏导我就不写了。
偏导存在:若二元函数在区域D上可微,则f在每个自变量的偏导都存在。
连续:设f为定义在点集
可微:(有图我就不打了,太浪费时间)

偏导存在不一定连续

连续不一定偏导存在

可微不一定偏导连续

最后再给大家补充几道题目方便大家理解熟悉。




参考资料: 数学分析学习指导书·下册 、华师大数学分析下册、数学分析中的反例