二元偏导数存在的条件_偏导连续、偏导存在、连续、可微,之间的关系

5932f26c42a9825e3fc201196f5b5818.png

在多元函数的领域里面,主要就是偏导的关系,所以我就为大家梳理了这些。同样那些定义定理我也不做证明,主要是说明一些不一定的反例。

同样在解释它们的关系之前我先说说这几个的定义。

偏导连续:先用定义求出该点的偏导数值c,再用求导公式求出不在该点时的偏导数

,最后求
当(x,y)趋于该点时的极限,如果
,即偏导数连续,否则不连续。

x方向的偏导.

设有二元函数 z=f(x,y) ,点

是其定义域D 内一点。把 y 固定在
而让 x 在
有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)

关于y方向的偏导我就不写了。

偏导存在:若二元函数在区域D上可微,则f在每个自变量的偏导都存在。

连续:设f为定义在点集

上的二元函数,
,
只要
就有

可微:(有图我就不打了,太浪费时间)

f5ff9bcf0f1b052a62fd5ef95f34cbb3.png

偏导存在不一定连续

de9406f77047ff4f0ca2b29878aabb54.png

连续不一定偏导存在

c960c656bf7ab8a86b75adb203cf8e8b.png

可微不一定偏导连续

a7ecb2ee6e9b1ec094c947a9946433cf.png

最后再给大家补充几道题目方便大家理解熟悉。

b21191b4199280ee71fea288dbf2c32d.png

89d86375e97059b499aa57cd350a5fbd.png

222cee909ea602f1c162b25a3a7ef115.png

713addba69fde3ee22a493ef33444c00.png

参考资料: 数学分析学习指导书·下册 、华师大数学分析下册、数学分析中的反例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值