二元偏导数存在的条件_复变函数的导数

本文探讨了复变函数的导数性质,解释了二元偏导数存在条件,并通过实例展示了如何应用这些概念。讨论了导数的四则运算、复合函数和反函数的导数规则,同时引入了调和函数的相关定理,包括平均值公式和最大模原理。
摘要由CSDN通过智能技术生成
定义1:设函数
的邻域内有定义,
存在,则称
的导数,记作

引理1:复函数
在区域
内可导(解析)

(1)
内可微。

(2)偏导数满足
(满足
方程)。

此时

由多元微积分的知识,如果偏导数全部连续,那么(1)成立,也能判定可导。由于复变函数的四则运算是由实函数直接延伸的,导数的四则运算法则,复合函数导数,反函数求导等性质可以直接延伸,具体内容见这篇文章:

https://zhuanlan.zhihu.com/p/89843248​zhuanlan.zhihu.com

公式(1)(2)可以直接沿用实函数的证明。

(1)

(2)

(3)

证:设

,则
,故
,得到
。根据引理1,
是可导的,

引理2:

(4)

因而:

显然导数连续,并满足

方程,故可导。

(5)

证:

,因此

注:(4)与(5)的证明演示了两种不同的思路,实际上这两种思路都可以分别证明两个结果。

接下来,由导数的四则运算法则,自然可以推广以下结论:

(6)

(7)

(8)

(9)

余下的初等函数都涉及多值函数问题,这里不再讨论;下面讨论两个例子。

例1:

处处不可导。

解:

,两者恒不相等,由引理1,显然不可导。

任意复函数都可以写成

的形式,因为
,带入
的表达式即可。

例2:若

可导,则

解:

这里给出了引理1的另一种理解。类似的,我们可以导出此时

定理1:若函数
在区域
内解析,并满足下列条件之一,则
是常数。

(1)在

(2)
内是常数。

(3)
解析。

(4)
内为常数。

证:设

,由引理1,满足
方程),且
。从二元微分学来看,如果能证明四个偏导数都恒为
,即可证明
是常数。

(1)

,使其实部与虚部相等,再由
方程,偏导数为

(2)由

为常数,可得
,再由
方程,偏导数为

(3)

,再由
方程有,
,故偏导数为

(4)若

,则
恒成立;若
是非
常数,则
是解析的,由(3),得证。

以下,我们简单的研究一下调和函数。接下来的论证中需要用到文章:代数学基本定理 中的定理3、定理6(平均值公式)、定理7(最大模原理)。

定义2:若实二元函数

在区域
内二阶可导,且满足
,则称
上的调和函数。

由上述文章的定理3,我们知道,在某个区域解析的函数在该区域内的任意阶倒数都存在。

定理2:设
在区域
内解析,
上的调和函数。

证:由

, 分别求导可知
的调和性同理可得。
定理3:设
上的调和函数,则存在
上的调和函数
满足,
上解析。

证:令

,容易验证其满足
方程,因而解析。

上面两个定理阐述了调和实函数与解析复函数之间的联系。以下我们考虑调和函数版的平均值公式和最大模原理。

定理4(平均值公式):设
邻域内的调和函数,则对于
,有

证:由定理3,有解析函数

,根据上述文章的定理6(平均值公式),
,两边取实部立即可得。
定理5(极值原理):设
上的调和函数,且
不恒为常数,则
上不能取到最大和最小值。

证:先证明最大值。由定理3,有解析函数

,假设在
处取得
的最大值,则显然
处取得最大值。但是
解析,根据上述文章的定理7(最大模原理),它取不到最大模,矛盾,因而取不到最大值。最小值考虑
,同理可得。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值