lstm原始论文_RNN及其改版(LSTM, 双向RNN, seq2seq)总结

本文详细介绍了循环神经网络(RNN)、LSTM(长短期记忆网络)以及双向RNN的基础知识和原理。RNN因其前后关联的学习能力在连续数据处理中广泛应用,但存在梯度消失问题。LSTM通过输入门、输出门和遗忘门解决了长期依赖问题。双向RNN结合前后信息进一步增强模型效果。此外,文章还提及了seq2seq模型在不等长序列问题中的应用。
摘要由CSDN通过智能技术生成

307cf9dabc9e24d2c25ec316a1bc7f1e.png

RNN(Recurrent Neural Networks) 循环神经网络

目的:考虑连续数据的前后关联影响。

方法:将前(和/或 后)方的数据作为一个权重加入到原有推断中。

作用:预测分析,语义分析,连续数列的分析

改进:

双向RNN:前后都作为权重加入到神经元的推导

LSTM:输入门,输出门,遗忘门,解决长期依赖的问题

GRN:更新门,重置门,与LSTM相同,节省计算量

seq2seq:解决不等长序列的问题


一、RNN

普通的神经网络中的神经元分布为:

1ea890890f9ba92fe5195f70b19b90df.png
神经网络原理

思路为:每一个点的数值乘以相关权重,求和,通过激活函数得到下一层的每个点。

问题为:每个数据为独立变量,不存在相互关联。而对于连续数据来说,前一个点与后一个点之间存在关联。为解决这个问题,让神经网络发掘出前后点之间的关联,提出循环神经网络。

1. RNN原理

33376e8ccfa3264a0f0886310f36092c.png
RNN原理

前一个节点的信息传递给下一个节点作为输入,其运算公式为:
ht = tanh(W*xt+U*ht-1+b)
其中xt为t时刻的输入,ht为t时刻的输出,W为该节点的权重,tanh为激活函数
当我们想知道ht时,ht其实包含了x0~xt的所有数值信息

2. RNN缺点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值