matlabeig函数根据什么原理_理论力学笔记(二):最小作用量原理

a2725c4c7a4ea252d2958eaa243966c0.png

最近在网上看了一场港中大杨纲凯教授关于最小作用量原理的讲座,觉得十分精彩,以下是我整理的一部分笔记以及看完该讲座的一些心得(文末已附上讲座链接)。

如果说普通物理和理论物理之间有一道分水岭的话,那一定是理论力学。在牛顿提出他的力学定律之后的一个世纪里,经典力学讨论的都是在笛卡尔坐标系下位移、速度、加速度、力等等矢量间的关系,用牛顿力学描述的物理直观而又形象,一个

就能够描述从苹果下落到月球公转等一系列自然现象,但看似简单凝练的牛顿力学,在面对一些复杂系统或特定坐标系时,却无法有效地解决问题,这时,引入一种更加普适的力学描述就显得尤为必要。随着最小作用量概念的应用,拉格朗日力学应运而生,拉格朗日力学虽然与牛顿力学在形式上等价,但可以不依赖特定坐标系解决问题,并且应用范围非常广泛,从电动力学到相对论,甚至在量子力学里,都可以看到它的影子。

一个简单的例子

为了引入拉格朗日力学并证明其与牛顿力学的等价性,首先,我们来考察一个简单的抛体运动:一个石子被向上抛起后,经过时间

回到地面,那么他的运动轨迹应该如何表示?上过高中的各位对这个问题一定不陌生,石子的位移关于时间的图像可以由下图的抛物线表示:

c28b876d147d8cb0ce6daa16091b6406.png
(Source: Principle of Least Action, K. Young, S. S. Tong, CUHK)

根据高中物理知识,我们可以写出位移关于时间的函数关系:

其中

是重力加速度。石子的运动轨迹为何如此?原因在于其受牛顿运动定律的支配,石子的运动始终满足以下等式:

(其中

表示
方向的加速度
在此处指重力势能。)

下面我们将用另一种方法解释石子沿这条路径运动的原因。

6d9e1ec6b6d1cd20704654c1d2c238ec.png
(Source: Principle of Least Action, K. Young, S. S. Tong, CUHK)

与上一章所讲的变分法类似,我们假设石子不受牛顿定律的支配,沿着其他可能的路径运动,比如图中的绿线和紫线,所谓的路径即任何满足边界条件的连续函数

,对于每一条可能的路径
,我们都可以根据某个规则计算出相应的实数,称为作用量,表示为
,那么正确的路径就是那条有最小作用量的路径,这就叫做
最小作用量原理,也称 哈密顿原理

那么,作用量

是根据什么规则来计算的呢?利用积分的思想,整条路径的作用量即每一小段路径的作用量之和,由于每一段路径的作用量和路径的长度成正比,我们可以列出以下等式:

其中的

称为拉格朗日量(Lagrangian),也叫拉氏量,即作用量关于时间的导数,由于每一小段路径的长度可以用其横坐标长度和斜率来表示,也就是关于
的函数,因此
也是
的函数,记为:

表示
的一阶导,即速度。)

那么,拉格朗日量与位移和速度之间到底有什么关系呢?我们首先给出一个拟设:

等于动能减势能,即:

如果你第一次看到这种形式,不免会觉得有些奇怪,我们所谓的能量是动能和势能之和,为什么拉氏量反而是动能和势能之差呢?这是一个非常好的问题,但很少有教科书会给出解释。我也曾经问过系里的教授,他认为这是从牛顿力学逆推出来的结果。这个答案并不让我感到满意,如果读者对

的形式有兴趣的话,可以关注一下
知乎里的这个问题,其中有一个回答提到这里的负号与闵式时空度规的洛伦兹号差有关,欧式空间上的最小作用量原理实际上就是的闵式时空里的最小能量原理,这个解释非常有启发性。

(闵可夫斯基度规,其中光速

。)

回到我们的拟设,设

,计算出每一条可能路径的作用量
,那么作用量最小的那条就是正确的路径。

证明拉格朗日力学与牛顿力学等价

下面我们来验证这个方法和牛顿力学的等价性。

当我们对一个函数求极值时,我们会求其关于自变量

的一阶导数,并令其等于0,即:

其中,

的微分,类似的,由于
的自变量是关于
的函数
,我们将
写作
的一阶变分就可以表示为

为了使作用量

达到极值,我们需要使变分里与
线性相关的项满足:

因为

,我们将
代入可得:

消去含有

的项,舍去
的高次项,得到:

进行泰勒展开,并舍去二阶以上的项:

根据分部积分,得到:

根据边界条件

,因此
等于0,上式转化为:

因此,

可以写为:

由于上式子对于任意满足条件的

皆成立,所以大括号内的项必须为0,即:

我们用最小作用量原理重新写出了牛顿力学!也因此证明了拉格朗日力学与牛顿力学的等价性。

拉格朗日力学的优越性

那么,看似复杂的拉格朗日力学比起牛顿力学有哪些优越性呢?

我们首先来考虑一下笛卡尔坐标系下的牛顿定律:

但如果我们使用极坐标

来表示平面上的点,我们就无法用
来表示牛顿定律,因为除了切向力之外,还有向心力
表示角度的导数,即角速度),因此,极坐标下的牛顿定律可以表示为:

由此可见,牛顿力学在不同的坐标系下有不同的表达形式,而最小作用量原理适用于所有坐标系,因为动能和势能与物体的坐标无关,所以拉格朗日量对于任何坐标系都适用。

自然地,我们引入广义坐标的概念,对于有

个自由度的系统,我们可以用
个坐标来表示:
,这就是所谓的广义坐标,我们将其相应的
称作广义速度,在这个例子中,质点的位置由两个坐标表示:
,由于
是广义坐标和广义速度的函数,要满足
,我们需要满足相应的欧拉-拉格朗日方程(详细推导过程见上一章“理论力学笔记(一):变分法”):

我们给

取个名字,叫
正则动量(Canonical Momentum),也就是广义上的动量,表示为

相应的,欧拉-拉格朗日方程就可以改写为:

了解了广义坐标和正则动量之后,我们回到极坐标下的拉格朗日力学,此时的拉格朗日量

的表达式为:

正则动量

等于
,也就是
,因此
等于

(这个概念的引入其实解决了我从高中起就有的困惑:为什么动量

是动能
关于速度
的导数?原因就在于广义动量其实是拉格朗日量对广义速度的一阶导数)

求关于
的偏导:

根据欧拉-拉格朗日方程,我们可以得到:

因此,运用最小作用量原理,我们很自然地写出了圆周运动的运动公式,相比牛顿力学所需要的几何方法,这种方式显得简单的多。当遇到比极坐标更复杂的坐标形式时,我们往往无法描绘出合适的图像,最小作用量原理的强大之处,在于即使我们无法从几何上直观地描绘一个力学系统,我们依然可以从数学上直接求解它的运动方程。

除此之外,最小作用量还应用在物理学中的方方面面,下一章将会介绍其在相对论、电动力学以及量子力学中的应用。


讲座链接

https://www.youtube.com/watch?v=IhlSqwZBW1M&t=2s​www.youtube.com

参考文献

1.《理论物理学教程-力学》,朗道,栗弗席兹著;李俊峰,鞠国兴译。

2. Prof Kenneth Young on "A Special Lecture: Principle of Least Action”, The Chinese University of Hong Kong.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值