matlabeig函数根据什么原理_(4)La Salle不变集原理与渐近稳定

880e83ad2c2e5af0432ba2a858fa80e8.png

本文主要参考《Applied Nonlinear Control》(Slotine,Li等著)这本书。如有错误疏漏,烦请指出。如需转载,请联系笔者,Dr.shenyue@http://gmail.com。

沈月:(3)Lyapunov函数与Autonomous System的稳定性判别​zhuanlan.zhihu.com
bdd5af99293a5fb0a19e13fb31d49903.png

我们在Lyapunov函数与稳定性判别的Lyapunov Theorem for Local/Global stability讲了,如果V(x)是局部正定的(正定说明除原点以外,V(x)都大于0),

,则说明系统是稳定的;当
时,才能说明是系统渐近稳定的。
渐近稳定在实际系统中是个很重要很好的性质,我们总是希望能得到渐近稳定的结论,而不仅仅是稳定的结论。而且我们知道,以上分析都只是系统稳定或者渐近稳定的充分条件,因此具有很大的保守性,也就是说有些系统虽然基于Lyapunov Theorem for Local/Global stability分析来说只能推出
从而有系统(both autonomous system and non-autonomous system)稳定有界的结论,但是系统其实是渐近稳定的(例如autonomous system)。La Salle不变集原理就是来帮助你基于
,却可能得出渐近稳定结论的或者告诉你系统具体收敛到哪个值(autonomous system)。

一、不变集的定义

  1. 如果系统从点x出发,那么系统未来的状态位置一直保持不变,一直待在出发点x,那么出发点x就叫做系统的不变点。
  2. 如果系统从某个区域内或者曲线出发上,例如以0为原点的半径为r的圆的区域或者有限环,系统的未来状态位置会一直待在该区域内(半径为r的圆内)或者曲线上,那么这个区域就叫做不变区。
  3. 所有这些不变点或者不变区域组成的集合,就叫做该系统的不变集。

显然,我们可以知道,平衡点属于不变集,满足第1条;有限环(limit cycle)属于不变集,满足第2条;吸引域(domain of attraction)属于不变集,满足第2条;高维系统会出现不变环(invariant torus)和混沌吸引子(chaotic attractor),满足第2条;整个无穷大的

,因为不管怎么运动,发散还是稳定,都在
里。

二、拉萨尔不变集原理(La Salle's Invariance Principle)

拉萨尔不变集原理Local Version(Local Invariant Set Theorem):对于不依赖于时间的系统(autonomous system)

,其中
连续,并且V(x)具有对x一阶连续偏导。如果
  1. 在某个区域
    ,也就是在V(x)该区域内有上界;
  2. 并且在该区域内,

把该区域内所有使得

的点的集合叫做R,而M是包含在R内最大的不变集。如果系统起始于该区域内,那么随着
系统一定会收敛于不变集M中的点。

Remarks:

  • 在非线性控制笔记(3)Lyapunov函数与Autonomous System的稳定性判别中,
    我们只能知道系统稳定有界,但是我们并不知道系统会收敛在哪里,La Salle不变集原理告诉你,收敛到不变集。
  • 所有满足
    组成的集合R难道不就是M吗?答案是No! 因为
    无法保证系统会一直待在
    上。但是集合M内的点,由于是R的子集,又是不变集,相当于是满足x属于不变集,这样就保证了
    后,会一直保持
  • 以上定理没有看到要求V(x)是正定函数,不需要吗?答案是Yes,不需要! V(x)不需要是正定的函数。因为由于V(x)对x是连续的,所以在有界区域
    是有下界的。利用Lyapunov函数与稳定性判别中
    Barbalat's Lemma,可以知道
    ,意味着,系统如果起始于区域
    会收敛到R(因为R就是
    的所有点的集合)。接着,我们可以证明系统不会收敛到任意的R内的点,一定会收敛到R内的最大不变集M内的点【因为任何不依赖于时间的系统的有界的trajectory,一定会收敛到不变集】。
  • 注意这个La Salle不变集原理要求了系统必须是不依赖于时间的系统(autonomous system),而Lyapunov函数与稳定性判别中的Lyapunov Theorem for Local Stability并不需要系统是不依赖于时间的系统(autonomous system)。所以La Salle不变集原理并不适用于依赖于时间的系统(non-autonomous system),这是它相对于Lyapunov Theorem for Local Stability的局限性。但是对于不依赖于时间的系统(autonomous system),La Salle不变集原理的优越性在于它不需要Lyapunov Theorem for Local Stability中要求V(x)正定以及只能得出关于平衡点的稳定性结论,La Salle不变集原理进一步拓展到更一般的有限环、平衡点之类的点。
  • 同样可以拓展到Global Version,额外要求就是Lyapunov函数与稳定性判别文中提到的V(x)需要radially unbounded。

显然,基于以上La Salle不变集原理,我们只能得到系统收敛于不变集的结论,但是具体收敛到不变集中的有限环(limit cycle)还是平衡点(equilibrium point)还是吸引域(region of attraction),我们并不知道,所以得不出我们想要的渐近稳定的结论,除非我们知道这个不变集里只有0这个平衡点。于是为了基于La Salle不变集原理能进一步得出渐近稳定的结论,就有了下面的引理:

推论:考虑到自治系统

,其中f(x)连续,V(x)对x具有连续一阶偏导,在原点的周围邻域
满足:
  1. V(x)局部正定
  2. 半负定
  3. La Salle不变集原理中定义的R集合只有x=0这个点

那么,我们就说系统在平衡点0渐近稳定。进一步,

内的最大的连通的区域
的区域
是原点0的吸引域的子集。

Remarks:

  • 引理中没有说La Salle不变集原理中提到的集合M,其实引理意味着M=R。
  • 由于同一个系统可能存在多个V(x),如果我们把他们相加,那么新的V(x)的R集合就是多个V(x)的交集,所以我们能进一步推出系统一定收敛到这些R的交集。
  • 同样可以拓展到Global Version,额外要求就是Lyapunov函数与稳定性判别文中提到的V(x)需要radially unbounded。

三、总结

拉萨尔不变集原理(La Salle's Invariance Principle)的local version 和global version,加上它的推论,构成不变集原理(Invariant Set Therorems),加上Lyapunov函数与稳定性判别最后一段的

局部稳定李雅普诺夫定理(Lyapunov Theorem for Local Stability)和全局稳定李雅普诺夫定理(Lyapunov Theorem for Global Stability)构成了Equilibrium Point Theorems,因为都是针对平衡点得出的稳定性结论!

共同构成了传说中的“”李雅普诺夫直接法(Lyapunov's Direct Method)“”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值