时间序列预测模型_时间序列组合模型在地下水位预测中的应用

本文介绍了一种利用时间序列组合建模预测地下水位的方法。该方法结合线性回归与GM(1,1)灰色模型,有效解决了地下水位预测难题,预测精度在1%以内。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

虚无zrj原创@20191221

地下水位预测中,由于存在多个周期的因素影响下,地下水会收到不同周期因素的影响,为传统的预测方法不能很好地预测地下水动态变化。当具有大量观测数据的时候,可以通过时间序列综合方法对不同周期因素进行分析和处理,得到很好地地下水位模拟和预测。预测结果有待在实践中进一步验证。本实例采用R语言进行了地下水位的建模和预测,结合线性回归、GM(1,1)灰色模型进行组合预测。经过检验,预测模型总体预测精度在1%以内。

经过测试,时间序列分析中常用的ARIMA模型不能对地下水位数据进行很好的建模,预测结果与实际情况不符。因此本人采用组合时间序列方法建模,有效地解决了地下水位预测问题。

地下水位的变化受各种因素的影响,其中包括了各种时间周期的因素影响,例如周期性的降水,周期性的干旱,周期性的人工,抽取地下水等等。如何有效的预测地下水的水位的变化,是一个非常棘手的问题。本人通过时间序列组合建模有效解决的这个问题。

下图是模拟数据和实测数据的对比图。

cc9c626bb0515b2590002d685f2e4d8d.png

时间序列的分解见下图:

336d3893e42b920fedadac4bd9baae73.png

选取合适的周期,将数据分解成季节项,趋势项和随机项。上图中可以看出下降趋势明显。针对趋势明显的数据,采用灰色gm11模型进行预测,效果较好。针对随机项数据,进一步进行时间序列分析。分析方法是进行季节分解得到趋势项和季节项,直到随机项为正态分布的随机白噪声。

0c842779c14372ede4f0575316795cc9.png
3d189fdd6ec2e332c9db10028a881331.png

随机项的周期大小不一,选择合适的周期至关重要,关系到模型精度与准确性。

以上预测均在R语言上实现,并使用了自主开发的北岩gm11灰色预测模型。经过检验模型的精度,MAPE在1%以内,与拟合数据对比发现精度很高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值