支持向量机和神经网络的区别_支持向量机(SVM)

支持向量机(SVM)是一种经典的分类器,通过Kernel技巧将数据映射至高维空间使其线性可分。SVM通过最大化间隔并关注Support Vector来构建模型。相比深度学习,SVM更注重理论完美,但实践上可能因不学习映射函数而受限。SVM通过拉格朗日对偶性简化问题,引入软间隔处理噪声数据,并使用不同的损失函数如hinge loss。核函数的选择是关键,如二次核和高斯核。SVM在解决线性不可分问题时表现出色,但随着深度学习的兴起,其研究热度下降。
摘要由CSDN通过智能技术生成

fdd8aab67e659a1824f8f557fc6e984a.png

SVM

支持向量机(Support Vector Machine-SVM)于1995年正式提出(Cortes and Vapnik, 1995),与logistics regression类似,最初SVM也是基于线性判别函数,并借助凸优化技术,以解决二分类问题,然而与逻辑回归不同的是,其输出结果为分类类别,并非类别概率。由于当时支持向量机在文本分类问题上显示出卓越的性能(AdaBoost+SVM),而很快成为机器学习领域的热点。直至2006年神经网络开始复兴(Hition在Science上发表文章指出在MINIST手写数字识别任务中神经网络的error rate达到1.2%,低于RBF核的SVM的1.4%error rate),12年深度学习“一鸣惊人”,这才使研究人员开始关注深度神经网络,SVM的研究逐渐淡去。但是不得不说的是SVM作为一种十分完美的分类器,其仍是有监督学习的经典代表。

SVM简单来说就是通过Kernel的技巧将地位空间线性不可分或难分的样本数据点映射至高维空间使其线性可分。此外,SVM通过构造目标函数使其样本间隔最大解决分类问题,也正因如此SVM更多的是关注Support Vector而忽视远离超平面的样本点,这也是为什么SVM比不上Deep Learning的一种原因。在具体实现中,其通过引入拉格朗日乘子,构造KKT条件将原问题转化为对偶问题简化求解。此外,通过Kernel trick实现非线性操作,扩展其分类能力,同时也简化了计算(不需直接求解映射函数

)。然而也正因此,SVM也招到了一些学者的诟病,即我们无法得到映射函数,同时核函数的设计也缺乏明确的指导。虽然部分学者试图求解
,但也只是针对具体的问题,无法给出普适的方法。

SVM与PCA、LDA以及流行学习等降维方法所不同的是,其通过升维解决分类问题。其实数据是否真正需要降维存在部分争议,数据降维主要是因为维数太高,我们目前无法求解,或很难有较好的方法进行求解,存在curse of dimension的问题。然而,有时数据降维后所得结果其实并不比未经降维处理的原始数据要好,或者有时是因为数据维数降低使其结果表面上看上去要比原来的要好,而真正结果却并没有多大精度的提升,甚至不如不进行降维处理。如在人脸识别中,通过PCA降维除去冗余,但是若只利用原始数据的颜色信息其仍能取得不错的结果。因此通过降维技术是否真正能是结果得到有效提高仍需仔细分析。(Sunjian老师等人就曾对此进行过相关讨论-Blessing of Dimension, 2013 CVPR。最近也有相关学者提出维度适当才能有较好的效果)

Margin & Support Vector

考虑线性可分的二分类问题如下所示:

4d5a9c9f97f6de86ce4a6e3642e56dfa.png
图1. 支持向量与间隔

在样本空间中中存在“正负”两类样本,这里我们期望能找到一个划分超平面(hyperplane)能更好的区分不同类别样本。在SVM中定义划分超平面由如下线性方程确定:

上式中,

为超平面法向量(垂直超平面);

为超平面位移项,确定超平面与原点间的距离。

故超平面由

唯一确定。这里我们定义正负样本的标签
,且:

同时定义使得

为支持向量(support vector),对应图1中虚线上的point(hard margin要求虚线内无样本点)。显然支持向量即为距超平面最近的点,因此定义间隔(margin)
为支持向量与超平面的距离,即其在超平面法线方向的投影。

上式中,

的二范数。对此,我们期望所求超平面能最大(好)的区分两类样本点(分的最开),即期望margin越大越好,则有:

注意到,

等价于
  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值