一、About DataFrame
DataFrame 是 Python 中 Pandas 库中的一种数据结构,是一种二维表。它类似 excel,或许说它可能有点像 matlab 的矩阵,但是 matlab 的矩阵只能放数值型值(当然 matlab 也可以用 cell 存放多类型数据),DataFrame 的单元格可以存放数值、字符串等,这就和 excel 表很像。
同时 DataFrame 可以设置列名 columns 与行名 index,可以通过像 matlab 一样通过位置获取数据也可以通过列名和行名定位。
二、创建 DataFrame
版本声明:Python 3.6.7
importpandas as pdimport numpy as np #pandas 常与 numpy 一起配合使用
如果还没安装直接在 cmd 里 pip 安装:
> pip installpandas> pip install numpy
1、直接创建
可以直接使用 pandas 的 DataFrame 函数创建,比如随机创建一个 4*4 的 DataFrame:
np.random.randn(4,4):存放在DataFrame里的数据
index=list('ABCD'):行名(或者可以说是索引)
columns=list('ABCD'):列名
后两个参数可以使用 list 输入,但是注意,这个list的长度要和 DataFrame 的大小匹配,不然会报错。当然,这两个参数是可选的,你可以选择不设置。而且发现,这两个list是可以一样的,但是每行每列的名字在 index 或 columns 里要是唯一的。
小数据量,手工键入数据:
df2 = pd.DataFrame([[1,2,3,4],[2,3,4,5], [3,4,5,6],[4,5,6,7]],
index=(['r1','r2','r3','r4']),
columns=(['c1','c2','c3','c4']))
2、使用字典创建
使用 DataFrame 方法,但是字典的每个 key 的 value 代表一列,而 key 是这一列的列名:
三、查看与筛选数据
1、查看列的数据类型:使用 dtypes 方法可以查看各列的数据类型
2、查看DataFrame的头尾
使用 head 可以查看前几行的数据,默认的是前5行,不过也可以自己设置;
使用 tail 可以查看后几行的数据,默认也是5行,参数可以自己设置;
3、查看行名与列名
使用 index 查看行名,columns 查看列名
In [6]: df3.dtypes
Out[6]:
name object
age int64
gender object
dtype: object
In [7]: df3.head(1)
Out[7]:
name age gender
0 张三18男
In [8]: df3.tail(1)
Out[8]:
name age gender2 王五 22男
In [9]: df3.index
Out[9]: RangeIndex(start=0, stop=3, step=1)
In [10]: df3.columns
Out[10]: Index(['name', 'age', 'gender'], dtype='object')
4、查看数据值
使用 values 可以查看 DataFrame 里的数据值,返回的是一个数组:
#查看所有的数据值
In [11]: df3.values
Out[11]:
array([['张三', 18, '男'],
['李四', 20, '女'],
['王五', 22, '男']], dtype=object)#查看某一列所有的数据值
In [12]: df3['name'].values
Out[12]: array(['张三', '李四', '王五'], dtype=object)
使用 loc 或者 iloc (切片)查看数据值,区别是 loc 是根据行名,iloc 是根据数字索引:
①loc:(location),works on labels in the index,只能使用字符型标签来索引数据,不能使用数字来索引数据,不过有特殊情况,当数据框dataframe的行标签或者列标签为数字,loc就可以来其来索引。
②iloc:(i=integer),works on the positions in the index (so it only takes integers),主要使用数字来索引数据,而不能使用字符型的标签来索引数据。
In [13]: df3.loc[1]
Out[13]:
name 李四
age20gender 女
Name:1, dtype: object
In [14]: df3.iloc[1]
Out[14]:
name 李四
age20gender 女
Name:1, dtype: object
5、查看行列数:使用 shape 查看行列数,注意:参数为0 表示查看行数,参数为1 表示查看列数。
6、DataFrame 数据格式的行列选取
importnumpy as npimportpandas as pddata= pd.DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz'))
data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型
data.w#选择表格中的'w'列,使用点属性,返回的是Series类型
data[['w']] #选择表格中的'w'列,返回的是DataFrame属性
data[['w','z']] #选择表格中的'w'、'z'列
data[0:2] #返回第1行到第2行的所有行,前闭后开,包括前不包括后
data[1:2] #返回第2行,从0计,返回的是单行,通过有前后值的索引形式,
#如果采用data[1]则报错
data.ix[1:2] #(deprecated)返回第2行的第三种方法,返回的是DataFrame,跟data[1:2]同
data['a':'b'] #利用index值进行切片,返回的是**前闭后闭**的DataFrame,
#即末端是包含的
data.irow(0) #(deprecated)取data的第一行
data.icol(0) #(deprecated)取data的第一列
data.head()#返回data的前几行数据,默认为前五行,需要前十行则dta.head(10)
data.tail() #返回data的后几行数据,默认为后五行,需要后十行则data.tail(10)
data.iloc[-1] #选取DataFrame最后一行,返回的是Series
data.iloc[-1:] #选取DataFrame最后一行,返回的是DataFrame
data.loc['a',['w','x']] #返回‘a’行'w'、'x'列,这种用于选取行索引列索引已知
data.iat[1,1] #选取第二行第二列,用于已知行、列位置的选取
四、DataFrame 数据操作
1、转置:直接字母T,这就有点 线性代数 的味道了哈
2、描述性统计
使用 describe 方法可以对数据根据“列”进行描述性统计:
In [15]: df3.describe()
Out[15]:
age
count3.0mean20.0std2.0min18.0
25% 19.0
50% 20.0
75% 21.0max22.0
由上可以看出,如果有的列是非数值型的,那么就跳过不会进行统计;如果想对行进行描述性统计,可以灵活处理一下:转置后进行 describe。
3、计算
使用 sum 默认对每“列”求和,sum(1) 为对每“行”求和:
In [16]: df3.sum() #列求和
Out[16]:
name 张三李四王五#如果元素是字符串,使用sum也会加起来(字符串拼接)
age 60gender 男女男
dtype: object
In [17]: df3.sum(1) #行求和
Out[17]:
018 #行中,如果有字符串有数值,则只计算数值
1 20
2 22dtype: int64
数乘运算使用 apply(应用 lambda 实现):
In [18]: df2
Out[18]:
c1 c2 c3 c4
r11 2 3 4r22 3 4 5r33 4 5 6r44 5 6 7In [19]: df2.apply(lambda x:x*2)
Out[19]:
c1 c2 c3 c4
r12 4 6 8r24 6 8 10r36 8 10 12r48 10 12 14
如果元素是字符串,则会把字符串再重复一遍。
乘方运算跟 matlab 类似,直接使用两个 *,乘方运算如果有元素是字符串的话,就会报错。
4、增删改
In [36]: df2
Out[36]:
c1 c2 c3 c4
r11 2 3 4r22 3 4 5r33 4 5 6r44 5 6 7
#1.增
In [37]: df2['c5'] = 8 #创建新列并赋值(统一值)
In [38]: df2
Out[38]:
c1 c2 c3 c4 c5
r11 2 3 4 8r22 3 4 5 8r33 4 5 6 8r44 5 6 7 8In [39]: df2.insert(0,'c0',[9, 9, 9, 9]) #使用 insert 方法可以指定把列插入到第几列,其他的列顺延
In [40]: df2
Out[40]:
c0 c1 c2 c3 c4 c5
r19 1 2 3 4 8r29 2 3 4 5 8r39 3 4 5 6 8r49 4 5 6 7 8
#2.删
In [41]: del df2['c0']
In [42]: df2
Out[42]:
c1 c2 c3 c4 c5
r11 2 3 4 8r22 3 4 5 8r33 4 5 6 8r44 5 6 7 8In [43]: df2.drop('c1',axis=1) #使用 drop() 方法删除
Out[43]:
c2 c3 c4 c5
r12 3 4 8r23 4 5 8r34 5 6 8r45 6 7 8In [44]: df2 #用 drop 删除时,删的是视图,并没有真正删除
Out[44]:
c1 c2 c3 c4 c5
r11 2 3 4 8r22 3 4 5 8r33 4 5 6 8r44 5 6 7 8
#dorp()可以通过axis(行:axis=0 ,列:axis=1)可以控制删除行或列,默认是行
#dorp()可以同时删除多行或多列,如 df2.drop(['c1','c2'], axis=1)
#3.改
In [45]: df2['c5']['r3'] = 99In [46]: df2
Out[46]:
c1 c2 c3 c4 c5
r11 2 3 4 8r22 3 4 5 8r33 4 5 6 99r44 5 6 7 8
5、合并拼接
使用 join可以将两个 DataFrame 合并,但只根据行列名合并,并且以作用的那个 DataFrame 的为基准。
但是,join 这个方法还有 how 这个参数可以设置,合并两个 DataFrame 的交集或并集。参数为 'inner' 表示交集,'outer' 表示并集。
如果要合并多个 Dataframe,可以用 list 把几个 Dataframe 装起来,然后使用 concat转化为一个新的 Dataframe。