前言
最近一直在分析数据,当我在比较两组之间的性别是否有显著差异时竟然用了独立样本T检验。虽然在分析的时候觉得有点不太对劲,但是还是分析了数据并且兴高采烈的把结果报给了boss。最后boss在检查我的结果的时候吐槽我说:在比较性别差异时怎么能用two-sample t test呐?瞬间清醒,才反应过来性别的数据并不是服从正态分布的。
参数检验是在假定知道总体分布形式的情况下,对总体分布的某些参数,如均值、方差等进行推断检验;非参数检验是在总体分布未知或知之甚少的情况下,利用样本数据对总体的分布形态或分布参数进行推断。因此,非参数检验又被称为“任意分布检验”。非参数检验适用于等级数据或类别数据,也适用于小样本数据。非参数检验方法最大的不足是不能充分利用数据资料的全部信息,同时不能处理“交互作用”。
卡方检验的具体步骤
1.向SPSS中录入数据
换到“变量试图”中

在“名称”下方第一个单元格中输入“group”,第二个单元格中输入“sex”,第三个单元格中输入“number”,其余的比如“类型”、“宽度”等等都是自动生成的。如下图所示

在“标签”一栏中依次输入“组别”、“性别”和“人数”

编辑“值”一栏:点击第一个小格的右侧会弹出一个值标签的窗口,“值”是在spss中的显示,比如一共有两组数据,则值设置为1和2。“标签”可以根据自己的数据来设置,第一组是什么数据就写上什么名字,比如我的两组数据分别为失眠患者被试和健康对照组,所以我的1设置为subject,2设置为control。

对于下面的性别,也是同样的操作

2.点击SPSS下方的数据试图开始人数的录入
在第一列输入两个1和两个2,因为有两组,分别为1和2,并且每组中都包含有男性和女性;
在第二列中分别输入1,2,1,2;
在第三列中分别按照对应的位置输入各自的人数。

3.数据分析
点击“数据”-加权个案

在对话框中,点击“加权个案”,将“人数”移到频率变量中,点击“确定”

点击菜单中的“分析”-描述统计-交叉表格

将代表行的“组别”栏加入行,代表列的“性别”栏加入列

点击"Statistics...",选择“卡方”和“McNemar”,点击继续,再点击确定

结果就可以出来的
最后的结果分析看Asymp.Sig
