SPSS篇—卡方检验

本文介绍了SPSS中的卡方检验,讲解了卡方检验的定义和用途,并通过实例展示了如何进行卡方检验。在数据分析中,卡方检验用于检验分类数据的差异,文中以药物对植物发病影响的实验为例,详细阐述了数据整理、值标签设置、加权处理及分析步骤,得出实验组与对照组发病率存在显著差异的结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天依旧跟大家分享一个在SPSS中使用率比较高的分析方法:卡方检验。

在开始做分析之前,我们需要明白两件事情:卡方检验是什么?一般用来干什么?我们只有充分了解分析方法以后才能够正确的使用它。

卡方检验在百科中的解释是:卡方检验是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。它的原理是:统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,如果卡方值越大,二者偏差程度越大;反之,二者偏差越小;若两个值完全相等时,卡方值就为0,表明理论值完全符合。

了解了卡方检验,我们就进入到今天的分析当中来。首先来看我们要做的卡方检验数据:由于工作需要,需要统计一种药物在植物使用前后发病情况是否有差别,我们将数据分成两组,一个实验组一个对照组,每组各有200株植物,在使用药物一段时间以后发现,实验组发病植物株数为28,未发病植物株数为172。对照组发病植物株数为60,未发病植物株数为140。

首先,我们需要根据题目建立下图的表格:

我们将数据归纳整理以后录入到SPSS中:

### 如何在SPSS中对性别数据进行卡方检验 #### 准备工作 为了确保能够顺利地执行卡方检验,在开始之前需确认已准备好两个变量:一个是分类变量(例如性别),另一个是分组变量(用于区分不同群体)。这两个变量都应该是名义尺度的数据[^2]。 #### 数据录入与整理 打开SPSS软件并输入待分析的数据集。如果已有现成文件,则可以直接导入CSV或Excel格式的文档到SPSS环境中。对于本案例而言,假设存在一个名为“Group”的列代表不同的实验组别;另一列为“Gender”,表示参与者的性别信息(男/女或其他编码式)[^3]。 #### 执行卡方检验的具体步骤 1. 在菜单栏点击`Analyze` -> `Descriptive Statistics` -> `Crosstabs...` 2. 将作为行变量(Row(s))的选择框内放入“Group”变量;将作为列变量(Column(s))的选择框里放置“Gender”。 3. 点击右侧的`Statistics...`按钮,在弹出窗口勾选`Chi-square`选项来请求计算χ²统计量及其对应的P值。 4. 如果希望获得更多的描述性统计数据或者期望频数等额外输出项,可以在同一对话框下继续选择其他感兴趣的项目。 5. 完成设置后依次单击OK返回主界面运行命令即可得到最终的结果报告表。 ```plaintext * 这是一个简单的SPSS语法示例 * CROSSTABS /TABLES=Group BY Gender /STATISTICS=CHISQ. ``` 通过上述过程可以得出关于两组间是否存在显著性的性别比例差异结论。需要注意的是,当样本量较小或是某些单元格中的观察次数过低时,可能会影响检验的有效性和准确性,此时建议考虑Fisher精确概率法或者其他替代案。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值