python边缘检测矫正_python边缘检测 - osc_axrkis5i的个人空间 - OSCHINA - 中文开源技术交流社区...

二值化,轮廓检测,去掉小框,

import cv2

import numpy as np

img = cv2.pyrDown(cv2.imread("hammer.jpg", cv2.IMREAD_UNCHANGED))

# threshold 函数对图像进行二化值处理,由于处理后图像对原图像有所变化,因此img.copy()生成新的图像,cv2.THRESH_BINARY是二化值

ret, thresh = cv2.threshold(cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY), 127, 255, cv2.THRESH_BINARY)

# findContours函数查找图像里的图形轮廓

# 函数参数thresh是图像对象

# 层次类型,参数cv2.RETR_EXTERNAL是获取最外层轮廓,cv2.RETR_TREE是获取轮廓的整体结构

# 轮廓逼近方法

# 输出的返回值,image是原图像、contours是图像的轮廓、hier是层次类型

image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

for c in contours:

# 轮廓绘制方法一

# boundingRect函数计算边框值,x,y是坐标值,w,h是矩形的宽和高

x, y, w, h = cv2.boundingRect(c)

# 在img图像画出矩形,(x, y), (x + w, y + h)是矩形坐标,(0, 255, 0)设置通道颜色,2是设置线条粗度

cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)

# 轮廓绘制方法二

# 查找最小区域

rect = cv2.minAreaRect(c)

# 计算最小面积矩形的坐标

box = cv2.boxPoints(rect)

# 将坐标规范化为整数

box = np.int0(box)

# 绘制矩形

cv2.drawContours(img, [box], 0, (0, 0, 255), 3)

# 轮廓绘制方法三

# 圆心坐标和半径的计算

(x, y), radius = cv2.minEnclosingCircle(c)

# 规范化为整数

center = (int(x), int(y))

radius = int(radius)

# 勾画圆形区域

img = cv2.circle(img, center, radius, (0, 255, 0), 2)

# # 轮廓绘制方法四

# 围绕图形勾画蓝色线条

cv2.drawContours(img, contours, -1, (255, 0, 0), 2)

# 显示图像

cv2.imshow("contours", img)

cv2.waitKey()

cv2.destroyAllWindows()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值