python切分数据集_Python数据集切分实例

本文介绍了如何使用Python将数据集按照固定比例稳定地切分为训练集和测试集,通过设置np.random.seed确保每次切分得到相同结果。示例代码中展示了如何对numpy数组进行切分,并提供了改进版函数。
摘要由CSDN通过智能技术生成

在处理数据过程中经常要把数据集切分为训练集和测试集,因此记录一下切分代码。

'''

data:数据集

test_ratio:测试机占比

如果data为numpy.numpy.ndarray直接使用此代码

如果data为pandas.DatFrame类型则

return data[train_indices],data[test_indices]

修改为

return data.iloc[train_indices],data.iloc[test_indices]

'''

def split_train(data,test_ratio):

shuffled_indices=np.random.permutation(len(data))

test_set_size=int(len(data)*test_ratio)

test_indices =shuffled_indices[:test_set_size]

train_indices=shuffled_indices[test_set_size:]

return data[train_indices],data[test_indices]

测试代码如下:

import numpy as np

import pandas as pd

data=np.random.randint(100,size=[25,4])

print(data)

结果如下:

从上图可以看出,原数据集按照5:1被随机分为两部分。但是此种方法存在一个缺点C每次调用次函数切分同一个数据集切分出来的结果都不一样,因此常在np.rand

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值