施密特正交化_机器学习 线性代数基础 | 3.3施密特正交化:寻找最佳投影基

本文深入探讨了施密特正交化方法,它用于将子空间中的基向量转化为标准正交向量,简化了向量投影的计算过程。通过理论分析和实例,展示了如何在三维空间中应用该方法,从三个线性无关的向量出发,逐步求得一组标准正交向量。施密特正交化是解决无解线性方程组近似解和空间线性拟合问题的有效工具。
摘要由CSDN通过智能技术生成
     ▼ 更多精彩推荐,请关注我们 ▼ 3.3  施密特正交化:寻找最佳投影基

在本章的前面两个小节里,我们通过向指定子空间进行投影,探索到了如何寻找“最近距离”的有效途径,通过理论分析和推导,成功得出了一组描述投影向量p和投影矩阵P的计算公式,并针对无解线性方程组的近似解问题以及空间上多点的线性拟合问题,提炼出了最小二乘法这个通用工具。

但是读者们其实会发现,我们拿出的这一组一般化的公式25017b9ae15019308fe76ff628999c44.png,他的计算过程其实并不简单,尤其是当我们不借助编程工具的时候会更加发现他的繁杂。如何简化这里的计算过程?我们在这一小节里就会专门介绍通过找到一个满足特定要求的矩阵A,来对运算过程进行简化的有效方法,而这里面的核心思路就是通过施密特正交化方法找到投影子空间的一组标准正交基。

3.3.1  简化投影计算:从ATA表达式入手

通过掌握前面两节所讲述的的内容,我们已经可以利用公式25017b9ae15019308fe76ff628999c44.png将空间中的任意一个向量向任意一个子空间进行投影,并最终得到他的投影向量p。其中,矩阵A的各列就对应着子空间的一组基向量。

但是,通过上一节的一些实际举例,我们会发现在进行计算的时候,尤其是如果不借助程序工具而是采用手算的方式,就会感觉到这个过程非常冗长、复杂,尤其是在计算e4f9dd33721bf30952c47f2d8b061b48.png这个表达式的过程中,涉及到矩阵乘法和矩阵取逆的操作,使得我们不由得在想:要是计算能够简单一点,那该多好呀!那么,我们究竟应该从哪里入手去简化这个计算过程呢?

第一直觉告诉我们,如果矩阵ea3bcb72cc9b018df312be02f28bcdc8.png相乘的结果是一个单位矩阵I那真的就太痛快了,由于单位矩阵I满足a6e94ed0e64c6c4914220715aed216ba.png等式成立,那么投影向量p的表达式就可以变得特别简单:44a2ba84d5472b699b56af889cf9f00a.png,是不是突然间感觉到特别清爽,特别友好?

那么,我们基于这个思路接着往下推理。

3.3.2   标准正交向量

这里,我们来看看应该怎么样做才能达到这一效果。首先,我们令矩阵305dafed6c7b600b9288d2def415db9a.png,其中各个列向量81e7867e4cc59f377eaf47eb177a831b.png彼此之间满足线性无关,因此就可以构成子空间的一组基。

2e4a205acb2fcd5bb6bd46e388b81e4f.png

从运算结果的表达式中我们不难发现,如果想要得到0e51863e1d110f7d1c4a6dfd614d95e1.png的最终结果,则我们选取的这一组列向量fd91d085dd202c4d6df58996f01afd05.png必须满足以下两个条件:

(1)在结果矩阵中,矩阵对角线上的元素必须都为1,即当1d0a8559962e768ed44f183ebe884e2d.png时,fad456ed015d36ef18a9e58dc09ad583.png

(2)在结果矩阵中,矩阵非对角线上的元素必须都为0,即当0a5c34fcf7fd13cde9d0e01a351cd814.png时,2ecf649fa501a898136184e95e415214.png

我们把话说的更直白一些,就是这一组列向量fd91d085dd202c4d6df58996f01afd05.png彼此之间的点积为0,意味着向量之间彼此正交;而向量与自身的点积为1,则意味着每一个向量的模长都为1,这一组列向量均为单位向量。

其实有一个专门的词汇来描述这一种情况:我们称这一组向量fd91d085dd202c4d6df58996f01afd05.png是标准正交的。

那么,由这么一组标准正交向量fd91d085dd202c4d6df58996f01afd05.png构成各列的矩阵,我们一般用一个专门的字母Q来表示,此时矩阵Q就满足bf62e0cc2be505d7e4778708deb3f531.png等式关系成立。强调一下,满足bf62e0cc2be505d7e4778708deb3f531.png这个等式成立的矩阵Q不要求是一个方阵。

不过如果当矩阵Q是一个方阵的时候,那么情况则更为特殊一些,此时我们称方阵Q为正交矩阵,并且方阵Q满足可逆性。这时的方阵Q具备一个有趣的性质,那就是:c9870abe7739b7de39ae12f02ca902e5.png,即,正交矩阵的逆矩阵等于自身的转置矩阵。当然,大家可千万不要忘了矩阵Q是方阵这个大前提啊。0d45ed04de262abe3fdbd0249df7efc4.png这个等式非常重要,他在后面的章节中将会派上大用场。

3.3.3   向标准正交向量上投影

有了上面的一系列推导介绍,显然我们再进行向量投影计算的时候,就应该首先去考虑使用标准正交向量81e7867e4cc59f377eaf47eb177a831b.png来作为投影子空间的基向量。在这种情况下,我们用正交矩阵Q来代替一般矩阵A,同时由于bf62e0cc2be505d7e4778708deb3f531.png的原因,之前推导出的投影向量p和投影向量P的表达式都得以简化:

b2ac9619e6cbc35efab393b0179bea9d.png

正是由于我们采用了标准正交向量fd91d085dd202c4d6df58996f01afd05.png来描述投影子空间,因此得到了如此清爽简洁的结果。那么很自然的问题就来了,我们怎样才能找到指定子空间上的这一组标准正交向量呢?

请大家不要着急,通过使用我们接下来要介绍的施密特正交化方法就能很容易的实现这个目标。

3.3.4  施密特正交化

施密特正交化方法就是用来解决我们上面提到的这个问题:如何将n维子空间中的任意一组基向量变换成标准正交向量。为了让大家更快的领悟到方法的核心要点,我们选择在一个三维空间3a77678465e0f66247165a0d96e53acb.png中进行举例说明,我们任意选取三个线性无关的向量:a,b,c,探索如何在他们的基础上最终通过运算获得一组标准正交向量5907053158e64fdb5c9ffc9cbd641826.png来作为三维空间7b42d060dfc9dbe13dcca0d65644450e.png中更优的一组新基。

我们的思路是:首先从abc三个向量中,通过运算变换得出三个彼此正交的向量b728b92c7264925e86ef032744a4bf00.png,然后再分别将其转化成模长为1的单位向量,由此得到最终的结果:一组标准正交向量。

那么,我首先就从向量a入手处理,向量f31a4471a84efbafdf92891ec51907f2.png就设置为与向量a相等,即满足01f4c3a5ddad06fbbd0d84eb72ecc9f8.png。因此就有:68b559ba8c5a40edea34c7bcc12b55bf.png

再来看看向量fb4583057982e5d98f09f047840030d5.png,向量fb4583057982e5d98f09f047840030d5.png要求与向量f31a4471a84efbafdf92891ec51907f2.png满足正交关系。这并不难办,我们就以此来处理向量b,利用3.1节的知识我们知道:向量b与其自身在向量f31a4471a84efbafdf92891ec51907f2.png上的投影之差,就正交于向量f31a4471a84efbafdf92891ec51907f2.png,这里的方法我们很熟悉,直接套用公式即可:

73ed870d87fbac293ea5a537b8e1d889.png,然后再将向量fb4583057982e5d98f09f047840030d5.png的模长变为1,即有b425670b1f189bf591a0c47ef32351df.png

最后我们再来看向量8f2ba9f7458c3eddc5ab72d001068b6a.png,向量8f2ba9f7458c3eddc5ab72d001068b6a.png要求同时与向量7c899864b9e5aec672242d46ed3b92f5.png和向量fb4583057982e5d98f09f047840030d5.png满足正交关系,那我们就来利用向量c,向量c减去其在向量f31a4471a84efbafdf92891ec51907f2.pngfb4583057982e5d98f09f047840030d5.png张成空间上的投影所得到的结果,就能满足同时正交于向量7c899864b9e5aec672242d46ed3b92f5.pngfb4583057982e5d98f09f047840030d5.png

因此,我们换一种表达方式描述就是:向量c减去其在向量7c899864b9e5aec672242d46ed3b92f5.pngfb4583057982e5d98f09f047840030d5.png上的投影之和,就能求得向量8f2ba9f7458c3eddc5ab72d001068b6a.png

07d2b7021ae9e3c1f66e1b84a1004324.png,再将其变为单位向量,就有:eaaa47dd376d85a19de3ee9c1b2ba9b9.png

如下图3.5所示,他描述了利用三维空间7b42d060dfc9dbe13dcca0d65644450e.png中的三个线性无关向量求解出三个彼此正交向量的过程,也就是我们讲解的施密特正交化的过程。

14384cce482aaa8194a1d5a0ab865612.png

图3.5  正交向量的求解过程

最终,如果我们将其扩展到一般化的问题:即求解任意个标准正交向量的计算问题,那么本质上就是一个不断迭代的过程,每一个向量减去其在已经求解出的所有正交向量上的投影,就得到了一个新的正交向量,最终将得到的每一个正交向量除以自己的模长,就得到了一组标准正交向量。

3.3.5    举例说明

我们来举一个实际的例子,在三维空间7b42d060dfc9dbe13dcca0d65644450e.png中有三个向量,其中向量0f348275d3db55dabe034c9b3b8a06b5.png,向量75c0d8b3bce93eab8249942f4130d7b1.png,向量07e62821a6f4db77b7e111316abddccf.png,我们依据这三个已知的一般向量来求解出7b42d060dfc9dbe13dcca0d65644450e.png空间中的一组标准正交向量。

我们直接按照上面的方法,先依次求解出一组正交向量:

(1)直接令向量f31a4471a84efbafdf92891ec51907f2.png等于向量a

c9eccde32c36b35c27154f0159e1cba1.png

(2)向量b减去其在向量f31a4471a84efbafdf92891ec51907f2.png上的投影,得到第二个垂直向量。

67f84845bb31873c4555d734cbeea9ed.png

(3)向量c减去其在向量f31a4471a84efbafdf92891ec51907f2.png和向量fb4583057982e5d98f09f047840030d5.png上的投影,得到第三个垂直向量。

ef809f441a2e06b2822c5b29a026db2e.png

最后,我们将求得的向量f31a4471a84efbafdf92891ec51907f2.png,向量fb4583057982e5d98f09f047840030d5.png和向量8f2ba9f7458c3eddc5ab72d001068b6a.png标准化,得到一组标准正交的向量2638c96f8499a9854f9d5a6b91d6ce3b.png506274682f64a2bf71360dc62f9f9f68.png90d4f3ae98157f3e3c8c5dca4eb85115.png,显然他们的模长均为1:

4b740637f8ef7a7d3ddd86acdac09548.png

在这一章的开头,我们介绍了两个实际的工程问题:一个是如何求取无解方程组的近似解;另一个是如何用直线去拟合空间中的一组不共线的点。这两个问题都有一个共同之处,那就是问题的背景都是在无法求得精确解的条件下去展开阐述的,而最终都是运用最小二乘法解决了实际问题。

在这两个实际问题中,问题都被抽象成了对矩阵乘法Ax=b的分析探讨,该式子无解的本质就是由于在矩阵A的目标空间中,向量b不在矩阵A的列空间上,因此在原空间中找不到对应的解向量x

由此,我们的处理方法就是在矩阵A的列空间中去寻找与向量b距离最近的向量,从而去近似的求取最接近的解。

这里的核心方法就是让向量b向子空间(这里是矩阵A的列空间)中进行投影。我们已经讲解了任意向量向指定子空间进行投影的原理和方法,推导出了相关的通用公式,并且通过观察公式的结构知道了一个用于简化运算的方法,即:选取一组标准正交向量作为描述这个子空间的一组基。从公式中我们就能很容易的看出,整个运算的过程被大大的简化了。

那么关键问题是如何快速的成功获取任意子空间中的一组标准正交向量?这一小节我们解决了这个问题。我们通过施密特正交化的方法,就能将子空间里的任意一组线性无关的向量转换成一组标准正交向量。

▼往期精彩回顾▼前言1.1 描述空间的工具:向量1.2 基底构建一切,基底决定坐标1.3 矩阵,让向量动起来1.4 矩阵乘向量的新视角:变换基底2.1 矩阵:描述空间中的映射2.2 追因溯源:逆矩阵和逆映射3.1 投影,寻找距离最近的向量3.2 深入剖析最小二乘法的本质 599ccdf78d1fce9619a8a9964bbb14c6.png 本书所涉及的源代码已上传到百度网盘,供读者下载。请读者关注封底“博雅读书社”微信 公众号,找到“资源下载”栏目,根据提示获取。 b719699ff12145c5bc94dd76742a8d18.gif

如果您对本书感兴趣,请进入当当网选购!

f30e167d2002dc4560c4f68058f6da62.png

abc6578d47a80f291fae8ca88f957082.gif

6f94298e44c887d5091634f6247b7f90.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值