python交通流预测算法_(5)基于深度学习的短时道路交通流预测

本文介绍了结合Conv-LSTM和Bi-LSTM的深度学习方法来预测短时道路交通流。通过Conv-LSTM提取时空特征,Bi-LSTM捕捉周期性特征,构建无需预处理的端到端预测架构。该方法在福州大学的研究中展示,有望提升交通流量预测的准确性。
摘要由CSDN通过智能技术生成

交通预见未来 (5)基于深度学习的短时道路交通流预测

1、文章信息

《Short-Term Traffic Flow Prediction with Conv-LSTM》。

这篇文章是一篇会议论文,2017第九届无线通信与信号处理国际会议(WCSP),福州大学物理与信息工程学院的几位老师,被引10次。

2、主体内容

本文提出了一种基于深度学习的短时交通流预测方法。交通流数据包含三个主要特征:时间特征、空间特征和周期性特征。我们把CNN和LSTM结合起来生成一个ConvLSTM模块,用于提取交通流的时空特征,然后使用Bi-LSTM(双向LSTM,Keras中有相应模块)提取交通流的周期特征。

利用ConvLSTM模块对相邻区域的短时交通流数据进行处理,提取时空特征;利用双向LSTM对预测点历史交通数据进行处理,提取交通流数据的周期特征。提出了一种无需数据预处理和数据特征提取的端到端深度学习短时交通流预测体系结构。最后,集中时空特征和周期特征对交通流进行预测。

3、创新点

既使用了ConvLSTM,又使用了Bi-LSTM, 结构新颖。

4、大家比较关注的算法实现

我们将交通流数据映射到一维向量。我们将预测点的交通流数据放入向量中心,根据与预测点的距离,将其他点的交通流数据依距离放在该向量中心(预测点)两侧。

将不同时刻的一维空间信息向量组合成矩阵如下:

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值