二重积分的复化simpson公式c_《Linear Algebra Done Right》线性代数复习及部分习题解答(2.C)...

本文是个人自学《Linear Algebra Done Right》的笔记,涵盖2.C章节的维数概念,包括基的唯一性、子空间维数、和的维数定理等。文章详细解析了如何证明有限维向量空间的基长度相等,并探讨了子空间维数与和的维数之间的关系。
摘要由CSDN通过智能技术生成

0065605a94d4889767dfc2b2d31398b7.png

个人声明

本系列文章记录本人自学线性代数教材《Linear Algebra Done Right》的概念梳理(复习)和部分习题解答(练习)。如有任何错误或不严谨之处恳请读者在评论区留言提醒。

本书信息

书名:Linear Algebra Done Right (3rd Edition)

语言:英文

作者:Sheldon Axler

ISSN: 0172--6056(纸质);2197-5604(电子)

ISBN: 978-3-319-11079-0(纸质);978-3-319-11080-6(电子)

出版社:Springer

出版年份:2015

参考链接

电子PDF链接(英文):Linear Algebra Done Right

习题答案链接(英文):Solution Manual

本书目录(译)

注:点击链接跳转至对应的章节内容,加粗字体表示本文所在的章节内容。

(链接更新中)

一、向量空间——

equation?tex=%5Cmathbb%7BR%7D%5E%7Bn%7D
equation?tex=%5Cmathbb%7BC%7D%5E%7Bn%7D ;向量空间的定义;子空间

二、有限维向量空间——生成空间与线性无关;基;维数

三、线性映射——线性映射的向量空间;零空间与值域;矩阵;可逆性与同构向量空间;向量空间的积与商;对偶性

四、多项式

五、特征值、特征向量与不变子空间——不变子空间;特征向量与上三角矩阵;特征空间与对角矩阵

六、内积空间——内积与范数;标准正交基;正交补与最小化问题

七、内积空间上的算子——自伴算子与正规算子;谱定理;正定算子与等距同构;极分解与奇异值分解

八、复向量空间上的算子——广义特征向量与幂零算子;算子的分解;特征多项式与最小多项式;Jordan型

九、实向量空间上的算子——复化;实内积空间上的算子

十、迹与行列式——迹;行列式

笔记附录

附录一、一些基础离散数学与抽象代数概念笔记

附录二、附录一中的定理证明


2.C 维数(Dimension)

关键词:维数、子空间的维数、和的维数

摘录译文(页44)

2.35 基的长度不取决于基
一个有限维向量空间的任意两个基有相同的长度。

equation?tex=V 是有限维向量空间。令
equation?tex=B_%7B1%7D
equation?tex=B_%7B2%7D
equation?tex=V 的两个基。则
equation?tex=B_%7B1%7D
equation?tex=V 中线性无关且
equation?tex=B_%7B2%7D 生成
equation?tex=V ,所以
equation?tex=B_%7B1%7D 的长度至多是
equation?tex=B_%7B2%7D 的长度(2.23)。将
equation?tex=B_%7B1%7D
equation?tex=B_%7B2%7D 互换亦可知
equation?tex=B_%7B2%7D 的长度至多是
equation?tex=B_%7B1%7D 的长度。因此
equation?tex=B_%7B1%7D 的长度等于
equation?tex=B_%7B2%7D 的长度,正如我们所想。

这里证明了任意有限维向量空间的基的长度的唯一性。一般来讲,若需要证明某些数学对象的唯一性,我们得先构造出任意两种不同的对象,然后再证明这两种对象只有相等的可能性。具体到该证明,若需要证明基的长度相等,则可以利用不等式的反对称性,先证明前一个数不大于后一个数,然后再证明后一个数不大于前一个数——即

equation?tex=a%3Db 等价于
equation?tex=a%5Cleq+b
equation?tex=b%5Cleq+a 。集合相等的证明同理,利用集合包含关系的反对称性——即
equation?tex=A%3DB 等价于
equation?tex=A%5Csubseteq+B
equation?tex=B%5Csubseteq+A 。该证明利用了基的定义(2.27)与定理(2.23)。至此,我们引申出了概念——
维数

摘录译文(页44)

2.36 定义 维数
equation?tex=%5Ctext%7Bdim%7D%5Cspace+V

一个有限维向量空间的 维数是该向量空间的任意基的长度。
equation?tex=V 的维数(若
equation?tex=V 是有限维向量空间)表示为
equation?tex=%5Ctext%7Bdim%7D%5Cspace+V

2.37 例 维数
equation?tex=%5Ctext%7Bdim%7D%5Cspace%5Cbold%7BF%7D%5E%7Bn%7D%3Dn 是因为
equation?tex=%5Cbold%7BF%7D%5E%7Bn%7D 的标准基有长度
equation?tex=n
equation?tex=%5Ctext%7Bdim%7D%5Cspace%5Cmathcal%7BP%7D_%7Bm%7D%28%5Cbold%7BF%7D%29%3Dm%2B1 是因为
equation?tex=%5Cmathcal%7BP%7D_%7Bm%7D%28%5Cbold%7BF%7D%29 的基
equation?tex=1%2Cz%2C...%2Cz%5E%7Bm%7D 有长度
equation?tex=m%2B1

这里定义了有限维向量空间

equation?tex=V 的维数——
equation?tex=V
任意基的长度。同时根据定理(2.26)可知有限维向量空间的子空间也是有限维的,因此存在 子空间的维数并得出相应的不等式:

摘录译文(页45)

2.38 子空间的维数
equation?tex=V 是有限维向量空间且
equation?tex=U
equation?tex=V 的一个子空间,则
equation?tex=%5Ctext%7Bdim%7D%5Cspace+U%5Cleq%5Ctext%7Bdim%7D%5Cspace+V


equation?tex=V 是有限维向量空间且
equation?tex=U
equation?tex=V 的一个子空间。把
equation?tex=U 的一个基考虑成
equation?tex=V 中的一个线性无关列表并且把
equation?tex=V 的一个基考虑成
equation?tex=V 中的一个生成列表。现在利用定理(2.23)得出
equation?tex=%5Ctext%7Bdim%7D%5Cspace+U%5Cleq%5Ctext%7Bdim%7D%5Cspace+V

这里证明了有限维向量空间的子空间的维数不大于该有限维向量空间的维数

最小子空间

equation?tex=%5Cleft%5C%7B0%5Cright%5C%7D 的维数是
equation?tex=0 是因为最小子空间
equation?tex=%5Cleft%5C%7B0%5Cright%5C%7D 的基是空列表
equation?tex=%28%29 ,而空列表的长度为
equation?tex=0 ——因此最小子空间也称作
零维空间(不是 零空间,下一章节3.B会提及)。

当我们考虑一个向量空间的维数时不能忽略该向量空间上的域,例如实数域

equation?tex=%5Cmathbb%7BR%7D 上的向量空间
equation?tex=%5Cmathbb%7BC%7D 的维数是
equation?tex=2 ,因为每个复数
equation?tex=z%5Cin+%5Cmathbb%7BC%7D 都能用唯一的有序实数对
equation?tex=%28a%2Cb%29%5Cin%5Cmathbb%7BR%7D%5E%7B2%7D 表示——
equation?tex=z%3Da%2Bbi 。又因为
equation?tex=%5Cmathbb%7BR%7D 上的
equation?tex=%5Cmathbb%7BR%7D%5E%7B2%7D 的维数为
equation?tex=2 ,所以
equation?tex=%5Cmathbb%7BR%7D 上的
equation?tex=%5Cmathbb%7BC%7D 的维数为
equation?tex=2 。但是复数域
equation?tex=%5Cmathbb%7BC%7D 上的向量空间
equation?tex=%5Cmathbb%7BC%7D 的维数是
equation?tex=1 。相应的,
equation?tex=%5Cmathbb%7BR%7D 上的
equation?tex=%5Cmathbb%7BC%7D 的标准基是
equation?tex=1%2Ci
equation?tex=%5Cmathbb%7BC%7D 上的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值