个人声明
本系列文章记录本人自学线性代数教材《Linear Algebra Done Right》的概念梳理(复习)和部分习题解答(练习)。如有任何错误或不严谨之处恳请读者在评论区留言提醒。
本书信息
书名:Linear Algebra Done Right (3rd Edition)
语言:英文
作者:Sheldon Axler
ISSN: 0172--6056(纸质);2197-5604(电子)
ISBN: 978-3-319-11079-0(纸质);978-3-319-11080-6(电子)
出版社:Springer
出版年份:2015
参考链接
电子PDF链接(英文):Linear Algebra Done Right
习题答案链接(英文):Solution Manual
本书目录(译)
注:点击链接跳转至对应的章节内容,加粗字体表示本文所在的章节内容。
(链接更新中)
一、向量空间——
二、有限维向量空间——生成空间与线性无关;基;维数
三、线性映射——线性映射的向量空间;零空间与值域;矩阵;可逆性与同构向量空间;向量空间的积与商;对偶性
四、多项式
五、特征值、特征向量与不变子空间——不变子空间;特征向量与上三角矩阵;特征空间与对角矩阵
六、内积空间——内积与范数;标准正交基;正交补与最小化问题
七、内积空间上的算子——自伴算子与正规算子;谱定理;正定算子与等距同构;极分解与奇异值分解
八、复向量空间上的算子——广义特征向量与幂零算子;算子的分解;特征多项式与最小多项式;Jordan型
九、实向量空间上的算子——复化;实内积空间上的算子
十、迹与行列式——迹;行列式
笔记附录
附录一、一些基础离散数学与抽象代数概念笔记
附录二、附录一中的定理证明
2.C 维数(Dimension)
关键词:维数、子空间的维数、和的维数
摘录译文(页44)
2.35 基的长度不取决于基
一个有限维向量空间的任意两个基有相同的长度。
证
设是有限维向量空间。令与是的两个基。则在中线性无关且生成,所以的长度至多是的长度(2.23)。将与互换亦可知的长度至多是的长度。因此的长度等于的长度,正如我们所想。
这里证明了任意有限维向量空间的基的长度的唯一性。一般来讲,若需要证明某些数学对象的唯一性,我们得先构造出任意两种不同的对象,然后再证明这两种对象只有相等的可能性。具体到该证明,若需要证明基的长度相等,则可以利用不等式的反对称性,先证明前一个数不大于后一个数,然后再证明后一个数不大于前一个数——即
摘录译文(页44)
2.36 定义 维数、
一个有限维向量空间的 维数是该向量空间的任意基的长度。的维数(若是有限维向量空间)表示为。
2.37 例 维数是因为的标准基有长度。是因为的基有长度。
这里定义了有限维向量空间
摘录译文(页45)
2.38 子空间的维数
若是有限维向量空间且是的一个子空间,则。
证
设是有限维向量空间且是的一个子空间。把的一个基考虑成中的一个线性无关列表并且把的一个基考虑成中的一个生成列表。现在利用定理(2.23)得出。
这里证明了有限维向量空间的子空间的维数不大于该有限维向量空间的维数。
最小子空间
当我们考虑一个向量空间的维数时不能忽略该向量空间上的域,例如实数域