python数据框排序_python-在pandas数据框中对行进行排序并获取...

一种使用基础数组数据专注于性能的方法是-

a = df.values

c = df.columns

idx = a.argsort(1)[:,::-1]

vals = a[np.arange(idx.shape[0])[:,None], idx]

IDs = c[idx]

names_vals = ['Max'+str(i+1) for i in range(a.shape[1])]

names_IDs = ['Col_Max'+str(i+1) for i in range(a.shape[1])]

df_vals = pd.DataFrame(vals, columns=names_vals)

df_IDs = pd.DataFrame(IDs, columns=names_IDs)

df_out = pd.concat([df, df_vals, df_IDs], axis=1)

样本输入,输出-

In [40]: df

Out[40]:

A B C D E

0 23 12.0 1 9 123.0

1 24 33.0 33 343 33.0

2 55 0.2 66 4 2.2

3 77 44.0 44 64 42.0

4 33 23.5 5 24 2.0

5 66 66.0 62 63 99.0

In [41]: df_out

Out[41]:

A B C D E Max1 Max2 Max3 Max4 Max5 Col_Max1 Col_Max2 \n0 23 12.0 1 9 123.0 123.0 23.0 12.0 9.0 1.0 E A

1 24 33.0 33 343 33.0 343.0 33.0 33.0 33.0 24.0 D E

2 55 0.2 66 4 2.2 66.0 55.0 4.0 2.2 0.2 C A

3 77 44.0 44 64 42.0 77.0 64.0 44.0 44.0 42.0 A D

4 33 23.5 5 24 2.0 33.0 24.0 23.5 5.0 2.0 A D

5 66 66.0 62 63 99.0 99.0 66.0 66.0 63.0 62.0 E B

Col_Max3 Col_Max4 Col_Max5

0 B D C

1 C B A

2 D E B

3 C B E

4 B C E

5 A D C

如果您需要按顺序输入值和ID,我们需要在此修改最后几步-

df0 = pd.DataFrame(np.dstack((vals, IDs)).reshape(a.shape[0],-1))

df0.columns = np.vstack((names_vals, names_IDs)).T.ravel()

df_out = pd.concat([df, df0], axis=1)

样本输出-

In [62]: df_out

Out[62]:

A B C D E Max1 Col_Max1 Max2 Col_Max2 Max3 Col_Max3 Max4 \n0 23 12.0 1 9 123.0 123 E 23 A 12 B 9

1 24 33.0 33 343 33.0 343 D 33 E 33 C 33

2 55 0.2 66 4 2.2 66 C 55 A 4 D 2.2

3 77 44.0 44 64 42.0 77 A 64 D 44 C 44

4 33 23.5 5 24 2.0 33 A 24 D 23.5 B 5

5 66 66.0 62 63 99.0 99 E 66 B 66 A 63

Col_Max4 Max5 Col_Max5

0 D 1 C

1 B 24 A

2 E 0.2 B

3 B 42 E

4 C 2 E

5 D 62 C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值