python训练模型太大怎么处理_python – 减小Keras LSTM模型的大小

定义要在函数外部保存的图层并命名它们.然后创建两个函数foo()和bar(). foo()将拥有包含嵌入层的原始管道. bar()将只包含管道AFTER嵌入层的一部分.相反,您将在bar()中定义具有嵌入尺寸的新Input()图层:

lstm1 = LSTM(256, return_sequences=True, name='lstm1')

lstm2 = LSTM(256, return_sequences=False, name='lstm2')

dense = Dense(NUM_OF_LABELS, name='Susie Dense')

def foo(...):

sentence_indices = Input(input_shape, dtype="int32")

embedding_layer = pretrained_embedding_layer(word_to_vec_map, word_to_index)

embeddings = embedding_layer(sentence_indices)

X = lstm1(embeddings)

X = Dropout(0.5)(X)

X = lstm2(X)

X = Dropout(0.5)(X)

X = dense(X)

X = Activation("softmax")(X)

return Model(inputs=sentence_indices, outputs=X)

def bar(...):

embeddings = Input(embedding_shape, dtype="float32")

X = lstm1(embeddings)

X = Dropout(0.5)(X)

X = lstm2(X)

X = Dropout(0.5)(X)

X = dense(X)

X = Activation("softmax")(X)

return Model(inputs=sentence_indices, outputs=X)

foo_model = foo(...)

bar_model = bar(...)

foo_model.fit(...)

bar_model.save_weights(...)

现在,您将训练原始的foo()模型.然后,您可以保存缩小的bar()模型的权重.加载模型时,不要忘记指定by_name = True参数:

foo_model.load_weights('bar_model.h5', by_name=True)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值