pca降维的基本思想_大数据培训_PCA降维

  PCA(Principal Component Analysis,主成分分析)

  在高维向量空间中,随着维度的增加,数据呈现出越来越稀疏的分布特点,增加后续算法的复杂度,而很多时候虽然数据维度较高,但是很多维度之间存在相关性,他们表达的信息有重叠。

  PCA的思想是将n维特征映射到k维上(k<n),这k维是全新的正交特征。

  这k维特征称为主成分,是重新构造出来的k维特征,而不是简单地从n维特征中去除其余n-k维特征(这也是与特征选择特征子集的方法的区别)。

  PCA的目的是在高维数据中找到最大方差的方向,接着映射它到比最初维数小或相等的新的子空间。

f272fc65aaeec8af47f0b3ac444d34c5.png

55beb28ad1075050cbcd9810d4638a6c.png

​  PCA算法流程

  输入:训练样本集 D=x(1),x(2),...,x(m)D=x(1),x(2),...,x(m) ,低维空间维数 d′d′ ;

  过程:.

  1:对所有样本进行中心化(去均值操作): x(i)j←x(i)j?1m∑mi=1x(i)jxj(i)←xj(i)?1m∑i=1mxj(i) ;

  2:计算样本的协方差矩阵 XXTXXT ;

  3:对协方差矩阵 XXTXXT 做特征值分解 ;

  4:取最大的 d′d′ 个特征值所对应的特征向量 w1,w2,...,wd′w1,w2,...,wd′

  5:将原样本矩阵与投影矩阵相乘: X?WX?W 即为降维后数据集 X′X′ 。其中 XX 为 m×nm×n 维, W=[w1,w2,...,wd′]W=[w1,w2,...,wd′] 为 n×d′n×d′ 维。

  6:输出:降维后的数据集 X′

PCA算法分析

  优点:使得数据更易使用,并且可以去除数据中的噪声,使得其他机器学习任务更加精确。该算法往往作为预处理步骤,在数据应用到其他算法之前清洗数据。

  缺点:数据维度降低并不代表特征的减少,因为降维仍旧保留了较大的信息量,对结果过拟合问题并没有帮助。不能将降维算法当做解决过拟合问题方法。如果原始数据特征维度并不是很大,也并不需要进行降维。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值