数据块划分
对于给定的数据集Magic(19020
个样本,10
个属性),我们首先将其划分为RSP数据块,然后再分别对他们进行特征提取,比较它们的特征提取结果的概率分布的相似情况
我们首先先将数据划分为K
个HDFS数据块(K=20
)
HDFS: [块数:
20
块内元素个数:950
数据块维度:11
]
import os
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
# 导入数据
data=np.loadtxt('../Magic.txt')
data=data[:19000,:]# 修整一下数据
X=data[:,:-1]
y=data[:,-1]
print('y: ',set(y))
'''
先按HDFS数据块划分,再划分为RSP数据块
'''
K=20 # HDFS数据块个数
M=25 # RSP数据块个数
# 按顺序切分为k份
HDFS=np.array(np.split(data,K))
for i in range(HDFS.shape[0]):
np.random.shuffle(HDFS[i])
HDFS_list=[np.split(D_k,M) for D_k in HDFS]
print('HDFS: [块数: {0} 块内元素个数: {1} 数据块维度: {2}]'.format(
HDFS.shape[0],HDFS.shape[1],HDFS.shape[2]))
然后,再根据HDFS数据块划分为RSP数据块
RSP: [块数:
25
块内元素个数:760
数据块维度:11
]
# 划分RSP
RSP=[[D_K[m] for D_K in HDFS_list] for m in range(M)]
for idx,RSP_ in enumerate(RSP):
tmp_RSP=RSP_[0]
for i in range(1,len(RSP_)):
tmp_RSP=np.vstack((tmp_RSP,RSP_[i]))
RSP[idx]=tmp_RSP
RSP=np.array(RSP)
print('RSP: [块数: {0} 块内元素个数: {1} 数据块维度: {2}]'.format(
RSP.shape[0],RSP.shape[1],RSP.shape[2]))
特征分布
我们对数据整体和RSP数据子块的10
个特征进行分布可视化
整体
plt.style.use('seaborn')
fig, axes = plt.subplots(ncols=2, nrows=5,figsize=[15,20])
for i, ax in zip(range(10), axes.flat):
# ax.set_title('fea'+str(i))
ax.set_xlabel('values')
ax.set_ylabel('nums')
sns.distplot(data[:,i],
hist=True,kde=True, ax=ax,color='royalblue')
plt.show()
RSP
对比
通过对比整体与RSP的特征分布,我们可以发现两者的分布差异不大
至此,我们便完成了RSP数据块的划分,接下来对数据整体和RSP数据子块进行特征提取
特征提取
PCA
PCA是较为基础的线性降维方法,通过svd得到特征之间协方差矩阵的特征向量,从中选择特征值最大的前k个特征向量作为主成分
我们观察在不同的特征提取个数下,各个主成分的方差占总体的比例(即降维所保留的信息占总体信息量的比例)
'''观察不同维度的方差之和'''
from sklearn.decomposition import PCA
X=data[:,:-1]
pca=PCA( )
pca.fit(X)
ratio=pca.explained_variance_ratio_ # 降维后各成分的方差占比
print("pca.components_: ",pca.components_.shape)
print("pca_var_ratio: ",pca.explained_variance_ratio_.shape)
#绘制图形
plt.plot(range(X.shape[1]),[np.sum(ratio[:i+1]) for i in range(X.shape[1])])
plt.xlabel('nums of component')
plt.ylabel('sum of var ratio')
plt.xticks(np.arange(X.shape[1]