简单来理解PCA算法

PCA(主成分分析)是常用的数据降维方法,通过特征分解或奇异值分解实现。本文介绍了基于这两者实现PCA的步骤,包括数据预处理、协方差矩阵计算、特征值和特征向量的获取,以及如何降维到k维空间。
摘要由CSDN通过智能技术生成

快速了解PCA算法

  PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法。PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。1

基于特征分解实现的PCA2

基于特征分解协方差矩阵实现的PCA的算法步骤:
设有m条n维数据。
  1)将原始数据按列组成n行m列矩阵X

  2)将X的每一行(代表一个属性字段)进行零均值化,即减去这一行的均值

  3)求出协方差矩阵代码: C = 1 m X X T C = \frac{1}{m}XX^{T} C=m

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值