复数乘法_初学讲义之高中数学十八:复数

本文介绍了复数的概念,包括虚数单位i的引入,复数的几何意义,以及复数的基本运算如加减乘除。复数可以看作是关于i的多项式,其乘法遵循交换律、结合律和分配率。在复平面上,复数与点一一对应,展示了向量的特性。此外,文章还探讨了共轭复数及其性质,以及i的几何含义——逆时针旋转π/2。最后,提到了复数在等比数列中的应用。
摘要由CSDN通过智能技术生成

复数很简单

虚数

在解一元二次方程

时,用到根的判别式:

时,方程有两个不相等的根

时,方程有一个根(或两个相等的根)

时,方程没有根

以上讨论是在实数范围内

这里很重要的一点,就是根号

里面的东西不能为负

那么如果里面的东西为负了,该怎么办呢?

在实数范围内,我们称它没有意义

现在,我们强行赋予它意义,具体什么意义后面再讲

我们规定:

i 叫作虚数单位

这样,所有根号下的负数都可以用 i 来表示

比如

可以写作

可以写作
,也就是 5i

可以写作
,也就是

也就是根号下的任何一个负数

(a>0)

都可以看做是

这样一个实数乘以i构成的数字叫作虚数

虚数是与实数相对应的

可以这么认为:

实数是实际存在于我们的真实空间的,比如整数就是我们用来数数的12345

整数互相相除得到的都是有理数(分数)

不能用分数表示的一些实数(比如π,e)就是无理数

虚数不存在于我们的真实空间,而是另一个“虚拟”的空间

它与整数差不多,只是多了一个“虚”的符号i

符号i的作用相当于把实数变“虚”了

就像是把现实中的物体放进镜子里的虚拟世界一样


复数

实数和虚数组合在一起,就构成了复数

由于实数和虚数是在不同的“空间”里,因此它们也要分别表示

因此复数表示为:

a+bi (a、b为实数)

这里a叫作实部,b(不是bi!)叫作虚部

当b=0时,0i=0复数就是a,也就是实数

当b≠0且a≠0时,这个复数也叫虚数

当b≠0且a=0时,复数就是bi,没有实数部分,叫作纯虚数


复数的基本运算

复数a+bi可以看做是关于i的多项式,实部就是常数项,虚部就是i的系数项

1. 加法和减法

两个复数相加,只要将实部和实部相加,虚部与虚部相加即可,即:

(a+bi)+(c+di)=(a+c)+(b+d)i (a、b、c、d为实数)

复数的加法也符合交换律、结合律,与实数的加法类似,非常简单

两个复数相减,只要将实部和实部相减,虚部与虚部相减即可,即:

(a+bi)-(c+di)=(a-c)+(b-d)i (a、b、c、d为实数)

复数的减法就是加法的逆运算,与实数的减法类似

复数相等:

如果两个复数相等,则它们的实部和虚部分别相等。

反之,如果两个复数的实部和虚部分别相等,则这两个复数相等。

(a+bi)=(c+di)等价于a=c且b=d

2. 乘法与乘方

复数的乘法也很简单,可以看做是两个关于 i 的多项式相乘:

这里要注意的就是加减号别搞错了

复数的乘法也满足交换律、结合律、分配率,证明很简单不再给出

复数乘方与实数的乘方类似:

=

复数的乘方也满足

证明很简单不再给出

3. 除法

复数的除法原理很简单,但是计算要稍微复杂些

我们设结果为x+yi

只需要解方程

即可

也就是方程组

解得

这个结论没必要背,现场推导很简单。

或者把除法看做是分数,直接在分子和分母上同时乘以分母的共轭复数,把分母化成实数也可以。

(a+bi)/(c+di)=[(a+bi)(c-di)]/[(c+di)(c-di)]=(ac+bd)/(cc+dd)+i*(bc-ad)//(cc+dd)

4. 开方和对数

复数的开方与除法类似,就是解方程,但是方程很难解,所以不需要掌握

复数的对数不需要掌握

小结

总的来说,复数的基本运算很简单,把它当做是关于i的多项式进行计算即可

记得


复数的几何意义

现在来探讨复数的几何意义

每组唯一的a、b,确定唯一的复数a+bi

是不是和平面直角坐标系很像?

每组唯一的a、b也确定平面中唯一的点(a,b)

并且,平面直角坐标系中横坐标和纵坐标是相互独立、可以互相转化的,复数中的实部与虚部也是相互独立、可以互相转化的

复平面

在平面上画两条互相垂直的数轴,把它们的交点定义为各自的0点,再分别规定好正方向,就构成了————平面直角坐标系

也可以是复平面

通常,我们定义横着的那条数轴(平面直角坐标系中的x轴)叫作实轴,向右为正方向

竖着的那条数轴(平面直角坐标系中的y轴)叫作虚轴

每个虚数a+bi和复平面上的点(a,b)一一对应

这里a就是它在实轴上对应的值,b就是它在虚轴上对应的值

6523a436eaafa3a0fe27408478899200.png

复数的加法和减法

一组坐标(a,b)除了可以表示点以外,还可以表示向量

虚数的加法和减法与向量的加法和减法类似

实部+实部对应横坐标+横坐标

虚部+虚部对应纵坐标+纵坐标

互不干扰

da06d185d336a6f94d3956f826ad3ef3.png

复数的模

向量(a,b)的模定义为

,也就是向量的大小

这里定义复数a+bi的模也是

,或者叫复数的绝对值|a+bi|

如果b=0,那么它的绝对值就是

,和之前学实数的绝对值是一样的

(1)复数的模有几个很好用的性质,

这个分别设两个复数a+bi和c+di,很容易证明

(2)用同样方法容易证明:

用数学归纳法结合(1)很容易证明:

共轭复数

规定实部相同,虚部互为相反数的两个复数,互为共轭复数,它们互相共轭,即

a+bi和a-bi互为共轭复数

共轭复数的模相等(

共轭复数的乘积等于它们的模的平方(

共轭复数在复平面中关于实轴镜面对称(很容易想象)

c032daa10c13aac5eae94b5b0a540e54.png

共轭复数其实只是一个概念,没有什么太多的内容


*i

到这里,i好像除了作为一个符号,把虚部和实部“隔离”开来,好像也没什么意思

在复平面上,它有一个几何含义:

任意复数乘以i,就是将它逆时针旋转π/2,乘以

就是旋转π......以此类推

乘以

就是逆时针旋转 nπ/2

来看4个复数:

其中

把这四个复数转化为对应的向量:

(a,b)

(-b,a)

(-a,-b)

(b,-a)

依次逆时针旋转π/2

下面是具体的例子:a=4,b=2

ff4adee625f1b011cebce8d5d6e84b66.png

其他

由于i的特殊性质:

构成一个一4为周期的循环

虚数经常出现在等比数列有关的题目中

练习:

请自行列出下面两个数列的前8项,并找规律

小结

总的来说,复数的内容相对简单且孤立,通常是单独出现,考察最多的是关于复数基本定义基本性质的数学计算

复数较多出现的综合题目是在等比数列中,考察 i 的特殊性质,但往往也很简单

复平面和平面直角坐标系没有本质区别,只是多引入了个 i,可以视作对向量进行操作的算符

与i直接相乘是最简单的逆时针旋转π/2,(更简单的是与1相乘,什么都没变)

任何向量(p,q)与复数a+bi相乘,相当于做了一个数学上的旋转+拉伸变换,如果|a+bi|=1,相当于只做了旋转,可能是一个考点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值