adf检验代码 python_python 编写ADF 检验 ,代码结果参数所表示的含义

本文介绍了使用Python的statsmodels库进行ADF(Augmented Dickey-Fuller)检验的过程,展示了两种结果显示方式,并详细解释了检验中的Test Statistic(T值)、p-value、Lags Used(延迟数)和Number of Observations Used(观测次数)的含义。重点强调了p值和T值的重要性,以及如何根据它们判断原假设是否被拒绝。
摘要由CSDN通过智能技术生成

from statsmodels.tsa.stattools importadfullerimportnumpy as npimportpandas as pd

adf_seq= np.array([1,2,3,4,5,7,5,1,54,3,6,87,45,14,24])

dftest= adfuller(adf_seq,autolag='AIC')

dfoutput= pd.Series(dftest[0:4],index=['Test Statistic','p-value','#Lags Used','Number of Observations Used'])#第一种显示方式

for key,value in dftest[4].items():

dfoutput['Critical Value (%s)' % key] =valueprint(dfoutput)#第二种显示方式

print(dftest)

(1)第一种显示方式如图所示:

具体的参数含义如下所示:

Test  Statistic :  T值,表示T统计量

p-value: p值,表示T统计量对应的概率值

Lags Used:表示延迟

Number of Observations Used: 表示测试的次数

Critical Value 1% :  表示t值下小于 - 4.938690 , 则原假设发生的概率小于1%, 其它的数值以此类推。

其中t值和p值是最重要的,其实这两个值是等效的,既可以看t值也可以看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值