from statsmodels.tsa.stattools importadfullerimportnumpy as npimportpandas as pd
adf_seq= np.array([1,2,3,4,5,7,5,1,54,3,6,87,45,14,24])
dftest= adfuller(adf_seq,autolag='AIC')
dfoutput= pd.Series(dftest[0:4],index=['Test Statistic','p-value','#Lags Used','Number of Observations Used'])#第一种显示方式
for key,value in dftest[4].items():
dfoutput['Critical Value (%s)' % key] =valueprint(dfoutput)#第二种显示方式
print(dftest)
(1)第一种显示方式如图所示:
具体的参数含义如下所示:
Test Statistic : T值,表示T统计量
p-value: p值,表示T统计量对应的概率值
Lags Used:表示延迟
Number of Observations Used: 表示测试的次数
Critical Value 1% : 表示t值下小于 - 4.938690 , 则原假设发生的概率小于1%, 其它的数值以此类推。
其中t值和p值是最重要的,其实这两个值是等效的,既可以看t值也可以看