多元函数第六:连续函数(3)单调有界收敛定理

连续函数的分量连续性质,让我得以将数学分析研究的一元函数的性质,推广到多元函数。因此,我们有必要回顾一下一元函数的一些性质。一般地,我们有两种定义连续函数的性质。一种是利用 ϵ \epsilon ϵ- δ \delta δ语言定义,一种是利用序列极限定义。在一元函数中,这两种定义是等价的。同时,利用分量连续的性质,不难证明这两种定义在多元函数中也是等价的。因此,研究函数的连续性,一个躲不开的问题,是序列的极限。关于实数序列极限,在数学分析中有许多重要的定理,包括确界原理,阿基米德性质,单调有界收敛定理,柯西收敛定理,闭区间套定理,有限覆盖定理,收敛子序列定理等等。这些结论中,将其中一个或者两个作为原理,可以推导出余下的定理。它们共同构成实数完备性的基石,当然也是整个分析学的基石。

按照一般的设定,我们通常假设确界原理是一个公理,由此推导出其他的定理。本文介绍的是实数序列的单调有界收敛定理。

定义 我们说实数序列 { x m } \{x_m\} { xm}是单调非减的,如果 x j ≤ x j + 1 x_j \leq x_{j+1} xjxj+1对所有的正整数 j j j成立。类似地,我们可以定义单调非增序列。

定义 我们说实数序列 { x m } \{x_m\} { xm}有界,如果存在实数 C C C满足 ∣ x j ∣ &lt; C |x_j| &lt; C xj<C对所有的正整数 j j j成立。

单调有界收敛定理 任何单调有界的序列都有极限。

证明 我们假设序列 { x m } \{x_m\} { xm}单调非增,对于非减的情况证明类似。设集合 { x m } \{x_m\} { xm}的上确界为 x x x,我们将证明 lim ⁡ m → ∞ x m = x \lim_{m\rightarrow\infty} x_m=x limmxm=x

事实上,对于任意的 ϵ &gt; 0 \epsilon &gt; 0 ϵ>0都存在正整数 M M M满足
x − ϵ &lt; x M ≤ x 。 x-\epsilon &lt; x_M \leq x。 xϵ<xMx
由序列的单调性知
x − ϵ &lt; x n ≤ x x-\epsilon &lt; x_n \leq x xϵ<xnx
也即
∣ x n − x ∣ &lt; ϵ | x_n - x | &lt; \epsilon xnx<ϵ
对所有的 n &gt; M n&gt;M n>M成立。这就证明了 lim ⁡ m → ∞ x m = x \lim_{m\rightarrow\infty} x_m=x limmxm=x。证毕。

单调有界收敛定义最大的应用在于,我们可以不显式地求解序列的极限,来判断序列是否收敛。因为,绝大部分序列的极限是没有显式表达式的。

关于一个单调有界序列,一个最著名的例子是
a n = ∑ m = 0 n 1 m ! a_n=\sum_{m=0}^n \frac{1}{m!} an=m=0nm!1
其单调性非常容易验证。为证明它有界我们有 m ! ≤ 2 m − 1

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值