函数局部有界性定理_高等数学入门——函数极限的基本性质

本文是高等数学入门系列的一部分,详细介绍了函数极限的基本性质,包括唯一性、局部有界性和局部保号性。通过与收敛数列性质对比,解释了“局部”概念,并探讨了函数在一点的性质如何影响其邻域行为。同时,讨论了函数的局部性质与整体性质的区别,以及单侧极限和无穷极限的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列简介:这个系列文章讲解高等数学的基础内容,注重学习方法的培养,对初学者不易理解的问题往往会不惜笔墨加以解释。在内容上,以国内的经典教材”同济版高等数学“为蓝本,并对具体内容作了适当取舍与拓展。例如用ε-δ语言证明函数极限这类高等数学课程不要求掌握的内容,我们不作过多介绍。本系列文章适合作为大一新生初学高等数学时的课堂同步辅导,也可作为高等数学期末复习以及考研第一轮复习时的参考资料。文章中的例题大多为扎实基础的常规性题目和帮助加深理解的概念辨析题,并适当选取了一些考研数学试题。所选题目难度各异,对于一些难度较大或对理解所学知识有帮助的“经典好题”,我们会详细讲解。阅读更多“高等数学入门”系列文章,欢迎关注数学若只如初见

cb36ed4f404209fce61a707f7f8d8f7a.png

505f3bd64d8d67c961ae427cd15bf4bf.png

本节我们来介绍函数极限的一些基本性质,包括极限的唯一性、局部有界性和局部保号性。并从多个角度对这些性质加以解释,例如与收敛数列性质的对比,对“局部”二字的理解,以及函数在一点处的性质能否推广到区间等问题。(由于公式较多,故正文采用图片形式给出。)

一、函数极限的三个基本性质。

0f9fc71e9761f68287d07cc83eddb928.png

二、对上述定理的一些简单变形。(上述定理对于x趋于∞,以及单侧极限情形都成立,请读者练习叙述各种情形下相应的定理。)

85f318927954d444b70c535af89cb95c.png

三、对定理名字中“局部”二字的理解。(函数在某点处极限存在,只能保证函数在该点“附近”是有界且保号的。)

8b9cbf865807b9f53e8a020a4aba2770.png

四、函数极限与数列极限性质的对比。

d02eb29cfb09d5cc2e7cf6022f833a48.png

关于收敛数列相应性质的介绍见下面两文:

高等数学入门——收敛数列的极限唯一性与有界性

高等数学入门——收敛数列的保号性

五、函数的“局部性质”与“整体性质”。(在本章末会介绍连续函数在闭区间上的一些重要性质,包括最值定理、介值定理等,它们都属于“整体性质”。)

52d1c6b7d6891ad876700244fe2dfa16.png

六、函数在一点处具有某性质,能推出函数在该点的某个邻域内都具有该性质吗?

5c692d1e0acaede3e5dd1b0cd22e0662.png

上一篇:高等数学入门——函数的单侧极限

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值