系列简介:这个系列文章讲解高等数学的基础内容,注重学习方法的培养,对初学者不易理解的问题往往会不惜笔墨加以解释。在内容上,以国内的经典教材”同济版高等数学“为蓝本,并对具体内容作了适当取舍与拓展。例如用ε-δ语言证明函数极限这类高等数学课程不要求掌握的内容,我们不作过多介绍。本系列文章适合作为大一新生初学高等数学时的课堂同步辅导,也可作为高等数学期末复习以及考研第一轮复习时的参考资料。文章中的例题大多为扎实基础的常规性题目和帮助加深理解的概念辨析题,并适当选取了一些考研数学试题。所选题目难度各异,对于一些难度较大或对理解所学知识有帮助的“经典好题”,我们会详细讲解。阅读更多“高等数学入门”系列文章,欢迎关注数学若只如初见!

本节我们来介绍函数极限的一些基本性质,包括极限的唯一性、局部有界性和局部保号性。并从多个角度对这些性质加以解释,例如与收敛数列性质的对比,对“局部”二字的理解,以及函数在一点处的性质能否推广到区间等问题。(由于公式较多,故正文采用图片形式给出。)
一、函数极限的三个基本性质。二、对上述定理的一些简单变形。(上述定理对于x趋于∞,以及单侧极限情形都成立,请读者练习叙述各种情形下相应的定理。)
三、对定理名字中“局部”二字的理解。(函数在某点处极限存在,只能保证函数在该点“附近”是有界且保号的。)
四、函数极限与数列极限性质的对比。
关于收敛数列相应性质的介绍见下面两文:
高等数学入门——收敛数列的极限唯一性与有界性
高等数学入门——收敛数列的保号性
五、函数的“局部性质”与“整体性质”。(在本章末会介绍连续函数在闭区间上的一些重要性质,包括最值定理、介值定理等,它们都属于“整体性质”。)
六、函数在一点处具有某性质,能推出函数在该点的某个邻域内都具有该性质吗?
上一篇:高等数学入门——函数的单侧极限